Effect of loratadine on the dissolution and bioavailability of gliclazide from its hydroxypropyl-β-cyclodextrin complex

  • Samar H. Thiab
  • Imad I. Hamdan
  • Dina El-Sabawi
  • Afaf H. Al-Nadaf
Original Article


Gliclazide (GZD) is a hypoglycemic agent that has slow dissolution rate and variable bioavailability. Inclusion complex of GZD with hydroxypropyl-β-cyclodextrin (HPβCD) was prepared with the molar ratio 1:2 by solvent evaporation method. The complex was characterized using Fourier transform infra-red spectroscopy and differential scanning calorimetry. Solubility and in vitro dissolution studies were performed at acidic and neutral pH values. Furthermore, the competitive interactions of the antihistamine loratadine (LOR) on the binding of GZD to HPβCD were studied by performing solubility and in vitro dissolution studies of GZD-HPβCD complex in presence and absence of the competing drug at pH values 4.5 and 6.8. GZD-HPβCD complex was found to enhance the dissolution of the drug in all pH values studied. The presence of LOR with GZD-HPβCD complex led to some pH dependent changes in the dissolution of the complex which supported the results obtained from the solubility studies. Using blood glucose level as a pharmacodynamic marker that reflects the bioavailability of GZD, in vivo studies have shown that GZD when given as its HPβCD complex together with LOR exhibits about 25 % lower bioavailability (effect) compared to GZD alone. In an attempt to explain the in vivo and dissolution studies, higher order complexes (aggregates) involving LOR, GZD and HPβCD were proposed. The formation of such larger complexes was supported by stoichiometric and diffusion studies.


Hydroxypropyl-β-cyclodextrin Gliclazide Loratadine Dissolution Displacement 



The authors would like to thank the Deanship of Academic Research at The University of Jordan for continuing financial support. The authors are also grateful to the Applied Sciences University for the financial support granted to this research project (Grant No. DRGS-2011-2).

Compliance with ethical standards

Animal rights

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Merisko-Liversidge, E., Liversidge, G.G., Cooper, E.R.: Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur. J. Pharm. Sci. 18, 113–120 (2003)CrossRefGoogle Scholar
  2. 2.
    Vieth, M., Siegel, M.G., Higgs, R.E., Watson, I.A., Robertson, D.H., Savin, K.A., Durst, G.L., Hipskind, P.A.: Characteristic physical properties and structural fragments of marketed oral drugs. J. Med. Chem. 47, 224–232 (2004)CrossRefGoogle Scholar
  3. 3.
    Krishnaiah, Y.S.R.: Pharmaceutical technologies for enhancing oral bioavailability of poorly soluble drugs. J. Bioequiv. Availab. 2, 28–36 (2010)CrossRefGoogle Scholar
  4. 4.
    Carrier, R.L., Miller, L.A., Ahmed, I.: The utility of cyclodextrins for enhancing oral bioavailability. J. Control Release 123, 78–99 (2007)CrossRefGoogle Scholar
  5. 5.
    Arun, R., Ashok, K., Sravanthi, V.: Cyclodextrins as drug carrier molecule: a review. Sci. Pharm. 76, 567–598 (2008)CrossRefGoogle Scholar
  6. 6.
    He, Z.G., Li, Y.S., Zhang, T.H., Tang, X., Zhao, C., Zhang, R.H.: Effects of 2-hydroxypropyl-beta-cyclodextrin on pharmacokinetics of digoxin in rabbits and humans. Pharmazie 59, 200–202 (2004)Google Scholar
  7. 7.
    Muraoka, A., Tokumura, T., Machida, Y.: In-vitro evaluation of cinnarizine as a competing agent to beta-cyclodextrin inclusion complexes: effect of cinnarizine on the membrane permeation rate of progesterone from its beta-cyclodextrin inclusion complex. Yakugaku Zasshi 128, 89–95 (2008)CrossRefGoogle Scholar
  8. 8.
    Miller, L.A., Carrier, R.L., Ahmed, I.: Practical considerations in development of solid dosage forms that contain cyclodextrin. J. Pharm. Sci. 96, 1691–1707 (2007)CrossRefGoogle Scholar
  9. 9.
    Loftsson, T., Brewster, M.E.: Pharmaceutical applications of cyclodextrins: effects on drug permeation through biological membranes. J. Pharm. Pharmacol. 63, 1119–1135 (2011)CrossRefGoogle Scholar
  10. 10.
    Narasimham, L., Barhate, V.D.: Physico-chemical characterization of some beta blockers and anti-diabetic drugs—potentiometric and spectrophotometric pKa determination in different co-solvents. Eur. J. Chem. 2, 36–46 (2011)CrossRefGoogle Scholar
  11. 11.
    El-Sabawi, D., Hamdan, I.I.: Improvement of dissolution rate of gliclazide through sodium salt formation. Dissolut. Technol. 2, 49–55 (2014)CrossRefGoogle Scholar
  12. 12.
    Talari, R., Varshosaz, J., Mostafavi, S.A., Nokhodchi, A.: Gliclazide microcrystals prepared by two methods of in situ micronization: pharmacokinetic studies in diabetic and normal rats. AAPS Pharm. Sci. Tech. 11, 786–792 (2010)CrossRefGoogle Scholar
  13. 13.
    Winters, C.S., York, P., Timmins, P.: Solid state examination of a gliclazide:beta-cyclodextrin complex. Eur. J. Pharm. Sci. 5, 209–214 (1997)CrossRefGoogle Scholar
  14. 14.
    Özkan, Y., Atay, T., Dikmen, N., Işimer, A., Aboul-Enein, H.Y.: Improvement of water solubility and in vitro dissolution rate of gliclazide by complexation with β-cyclodextrin. Pharm. Acta Helv. 74, 365–370 (2000)CrossRefGoogle Scholar
  15. 15.
    Lo, Y.-K., Hsu, C.-P., Tsai, T.-G., Cham, T.-G.: Comparison of the solubility and dissolution rate of gliclazide-β-cyclodextrin inclusion complexes prepared by liquid/liquid extraction and neutralization. J. Food Drug Anal. 14, 230–235 (2006)Google Scholar
  16. 16.
    Sapkal, N.P., Kilor, V.A., Bhusari, K.P., Daud, A.S.: Evaluation of some methods for preparing gliclazide-β-cyclodextrin inclusion complexes. Trop. J. Pharm. Res. 6, 833–840 (2007)CrossRefGoogle Scholar
  17. 17.
    Hiremath, S.N., Raghavendra, R.K., Sunil, F., Danki, L.S., Rampure, M.V., Swamy, P.V., Bhosale, U.V.: Dissolution enhancement of gliclazide by preparation of inclusion complexes with β-cyclodextrin. Asian J. Pharm. 2, 73–76 (2008)CrossRefGoogle Scholar
  18. 18.
    Sharma, G.S., Srikanth, M.V., Sunil, S.A., Sreenivasa Rao, N., Ramana Murthy, K.V.: Dissolution rate enhancement of poorly soluble gliclazide by complexation with hydroxy propyl β cyclodextrin. Res. J. Pharm. Biol. Chem. Sci. 2, 814–823 (2011)Google Scholar
  19. 19.
    Tokumura, T., Muraoka, A., Machida, Y.: Improvement of oral bioavailability of flurbiprofen from flurbiprofen/β-cyclodextrin inclusion complex by action of cinnarizine. Eur. J. Pharm. Biopharm. 73, 202–204 (2009)CrossRefGoogle Scholar
  20. 20.
    Khan, M.Z., Rausl, D., Zanoski, R., Zidar, S., Mikulcić, J.H., Krizmanić, L., Eskinja, M., Mildner, B., Knezević, Z.: Classification of loratadine based on the biopharmaceutics drug classification concept and possible in vitro–in vivo correlation. Biol. Pharm. Bull. 27, 1630–1635 (2004)CrossRefGoogle Scholar
  21. 21.
    Bhattachar, S.N., Deschenes, L.A., Wesley, J.A.: Solubility: it’s not just for physical chemists. Drug Discov. Today 11, 1012–1018 (2006)CrossRefGoogle Scholar
  22. 22.
    Lin, S.Y., Hsu, C.H., Sheu, M.T.: Curve-fitting FTIR studies of loratadine/hydroxypropyl-beta-cyclodextrin inclusion complex induced by co-grinding process. J. Pharm. Biomed. Anal. 53, 799–803 (2010)CrossRefGoogle Scholar
  23. 23.
    Higuchi, T.A., Connors, K.A.: Phase-solubility techniques. Adv. Anal. Chem. Instr. 4, 117–122 (1965)Google Scholar
  24. 24.
    Etuk, E.U.: Animals models for studying diabetes mellitus. Agric. Biol. J. N. Am. 1, 130–134 (2010)Google Scholar
  25. 25.
    Varma, M.M., Kumar, P.S.: Formulation and evaluation of gliclazide tablets containing PVP-K30 and Hydroxy propyl-β-cyclodextrin solid dispersion. Inter. J. Pharm. Sci. Nano. 5, 1706–1719 (2012)Google Scholar
  26. 26.
    Menon, S.K., Mistry, B.R., Joshi, K.V., Modi, N.R., Shashtri, D.: Evaluation and solubility improvement of carvedilol: PSC[n]arene inclusion complexes with acute oral toxicity studies. J. Incl. Phenom. Macro. 73, 295–303 (2012)CrossRefGoogle Scholar
  27. 27.
    Moyano, J.R., Arias, M.J., Ginés, J.M., Pérez-Martínez, J.I., Muňoz, P., Giordano, F.: Thermal characterization of gliclazide/β-cyclodextrin inclusion complexes. J. Therm. Anal. 51, 1001–1007 (1998)CrossRefGoogle Scholar
  28. 28.
    Radi, A.E., Eissa, S.: Electrochemical study of gliclazide and its complexation with β-cyclodextrin. Electroanalysis 22, 2991–2996 (2010)CrossRefGoogle Scholar
  29. 29.
    Moyano, J.R., Gines, J.M., Arias, M.J., Perez-Martinez, J.T., Bettinetti, G., Giordano, F.: Study of complexation of gliclazide with β-cyclodextrin in solution by NMR technique. J. Incl. Phenom. Mol. Recogn. Chem. 25, 137–140 (1996)CrossRefGoogle Scholar
  30. 30.
    Nacsa, Á., Berkesi, O., Szabó-Révész, P., Aigner, Z.: Achievement of pH-independence of poorly-soluble, ionizable loratadine by inclusion complex formation with dimethyl-β-cyclodextrin. J. Incl. Phenom. Macro. 64, 249–254 (2009)CrossRefGoogle Scholar
  31. 31.
    Messner, M., Kurkov, S.V., Brewster, M.E., Jansook, P., Loftsson, T.: Self-assembly of cyclodextrin complexes: aggregation of hydrocortisone/cyclodextrin complexes. Int. J. Pharm. 407, 174–183 (2011)CrossRefGoogle Scholar
  32. 32.
    Demirturk, E., Öner, L.: Solubility and dissolution properties of gliclazide. FABAD J. Pharm. Sci. 29, 21–25 (2004)Google Scholar
  33. 33.
    Lakka, N.S., Goswami, N.: Solubility and dissolution profile studies of gliclazide in pharmaceutical formulations by RP-HPLC. Int. Res. J. Pharm. 3, 126–129 (2012)Google Scholar
  34. 34.
    Khan, K.A.: The concept of dissolution efficiency. J. Pharm. Pharmacol. 27, 48–49 (1975)CrossRefGoogle Scholar
  35. 35.
    Omar, L., El-Barghouthi, M.I., Masoud, N.A., Abdoh, A.A., Al Omari, M.M., Zughul, M.B., Badwan, A.A.: Inclusion complexation of loratadine with natural and modified cyclodextrins: phase solubility and thermodynamic studies. J. Solut. Chem. 36, 605–616 (2007)CrossRefGoogle Scholar
  36. 36.
    Aggarwal, S., Singh, P.N., Mishra, B.: Studies on solubility and hypoglycemic activity of gliclazide beta-cyclodextrin-hydroxypropylmethylcellulose complexes. Pharmazie 57, 191–193 (2002)Google Scholar
  37. 37.
    Loftsson, T., Jarho, P., Másson, M., Järvinen, T.: Cyclodextrins in drug delivery. Expert Opin. Drug Deliv. 2, 335–351 (2005)CrossRefGoogle Scholar
  38. 38.
    Magnúsdóttir, A., Másson, M., Loftsson, T.: Self association and cyclodextrin solubilization of NSAIDs. J. Incl. Phenom. Macro. 44, 213–218 (2002)CrossRefGoogle Scholar
  39. 39.
    Al-Salami, H., Butt, G., Tucker, I., Mikov, M.: Influence of the semisynthetic bile acid MKC on the ileal permeation of gliclazide in healthy and diabetic rats. Pharmacol. Rep. 60, 532–541 (2008)Google Scholar
  40. 40.
    Tokumura, T., Nanba, M., Tsushima, Y., Tatsuishi, K., Kayano, M., Machida, Y., Nagai, T.: Enhancement of bioavailability of cinnarizine from its β-cyclodextrin complex on oral administration with DL-phenylalanine as a competing agent. J. Pharm. Sci. 75, 391–394 (1986)CrossRefGoogle Scholar
  41. 41.
    Ono, N., Hirayama, F., Arima, H., Uekama, K., Rytting, J.H.: Model analysis for oral absorption of a drug/cyclodextrin complex involving competitive inclusion complexes. J. Incl. Phenom. Macro. 44, 93–96 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Samar H. Thiab
    • 1
  • Imad I. Hamdan
    • 2
  • Dina El-Sabawi
    • 2
  • Afaf H. Al-Nadaf
    • 1
  1. 1.Department of Pharmaceutical Chemistry and PharmacognosyApplied Sciences UniversityAmmanJordan
  2. 2.Faculty of PharmacyThe University of JordanAmmanJordan

Personalised recommendations