Effect of hydroxypropyl methylcellulose on beta cyclodextrin complexation of praziquantel in solution and in solid state

  • Layany Carolyny da Silva Mourão
  • Daiane Rafaela M. Ribeiro Batista
  • Sara Braga Honorato
  • Alejandro Pedro Ayala
  • Waldenice de Alencar Morais
  • Euzébio Guimarães Barbosa
  • Fernanda Nervo Raffin
  • Túlio Flávio Accioly de Lima e MouraEmail author
Original Article


The effect of hydroxypropyl methylcellulose (HPMC) on complexation of praziquantel with beta cyclodextrin (PRZ–βCD) in solution and in the solid state was investigated. Phase solubility studies of βCD (0, 3, 6, 9 and 12 mmol L−1) were carried out by adding an excess amount of PRZ (8 mmol L−1) in the absence and presence of the polymer (with and without heating at 120 °C). Equimolar binary and ternary complexes were prepared by kneading and freeze-drying and characterized by DSC, DTA TGA, FTIR, XRPD and SEM patterns. A stoichiometry ratio of 1:1 was indicated by phase-solubility studies both in the presence and absence of 0.5 % HPMC. The molecular modeling confirms the 1:1 stoichiometry rate with Higuchi’s Al type. The presence of HPMC improved the complexation between PRZ and βCD by increases in both the intrinsic solubility of the drug as well as in values of the stability constant, complexation efficiency and Gibb’s free energy of the complex, principally in the presence of heating (up to ninefold relative to aqueous solubility of the drug). The synergic effect of HPMC was also observed in thermal analysis, with lower dehydration enthalpy for ternary complexes. The results of melting enthalpy were according to XRPD results, indicating that the preparation technique and presence of HPMC influenced thermal and crystallographic characteristics of inclusion complexes. The FTIR patterns suggest the complexation mechanism while SEM patterns showed the formation of inclusion complexes. The use of the HPMC and freeze-drying technique suggest more effective formation of PRZ:βCD inclusion complexes.


Hydroxypropyl methylcellulose Beta cyclodextrin Praziquantel Inclusion complex Kneading Freeze-drying 



The authors thank CAPES (Brazil) for the financial support and Gerbrás for purchase praziquantel and hydroxypropyl methylcellulose.


This study was supported by CAPES.

Compliance with ethical standards

Conflict of interest

The author(s) declare(s) that they have no conflicts of interest to disclose.


  1. 1.
    United States Pharmacopeial Convention: United States pharmacopeia—USP 31: National Formulary—NF 26. United States Pharmacopeial Convention, Rockville (2008)Google Scholar
  2. 2.
    Ali, B.H.: Short review of some pharmacological, therapeutic and toxicological properties of praziquantel in man and animals. Pak. J. Pharm. Sci. 19, 170–175 (2006)Google Scholar
  3. 3.
    Lindenberg, M., Kopp, S., Dressman, J.B.: Classification of orally administered drugs on the World Health Organization model list of essential medicines according to the biopharmaceutics classification system. Eur. J. Pharm. Biopharm. 58, 265–278 (2004)CrossRefGoogle Scholar
  4. 4.
    Amidon, G.L., Lennernäs, H., Shah, V.P., Crison, J.R.: A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 12, 413–420 (1995)CrossRefGoogle Scholar
  5. 5.
    Soares-Sobrinho, J.L., Soares, M.F.L.R., Rolim-Neto, P.J., Torres-Labandeira, J.J.: Physicochemical study of solid-state benznidazole–cyclodextrin complexes. J. Therm. Anal. Calorim. 106, 319–325 (2011)CrossRefGoogle Scholar
  6. 6.
    Loftsson, T., Brewster, M.E.: Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci. 85, 1017–1025 (1996)CrossRefGoogle Scholar
  7. 7.
    Dandawate, P., Vemuri, K., Khana, E.M., Sritharan, M., Padhye, S.: Synthesis, characterization and anti-tubercular activity of ferrocenylhydrazones and their β-cyclodextrin conjugates. Carbohydr. Polym. 108, 135–144 (2014)CrossRefGoogle Scholar
  8. 8.
    Petry, M., Borghetti, G.S., Bassani, V.L.: Influência de ciclodextrinas e polímero hidrofílico sobre a hidrossolubilidade de diferentes formas polimórficas de quercetina. Lat. Am. J. Pharm. 26, 831–836 (2007)Google Scholar
  9. 9.
    Valero, M., Pérez-Revuelta, B.I., Rodríguez, L.J.: Effect of PVP K-25 on the formation of the naproxen:β-cyclodextrin complex. Int. J. Pharm. 253, 97–110 (2003)CrossRefGoogle Scholar
  10. 10.
    Challa, R., Ahuja, A., Ali, J., Khar, R.: Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech. 6, 329–357 (2005)CrossRefGoogle Scholar
  11. 11.
    Jansook, P., Loftsoon, T.: CDs as solubilizers: effects of excipients and competing drugs. Int. J. Pharm. 379, 32–40 (2009)CrossRefGoogle Scholar
  12. 12.
    Jug, M., Becirevic-Lacan, M.: Influence of hydroxypropyl–hcyclodextrin complexation on piroxicam release from buccoadhesive tablets. Eur. J. Pharm. Sci. 21, 251–260 (2004)CrossRefGoogle Scholar
  13. 13.
    Loh, G.O.K., Tan, Y.T.F., Peh, K.K.: Effect of HPMC concentration on β-cyclodextrin solubilization of norfloxacin. Carbohydr. Polym. 101, 505–510 (2014)CrossRefGoogle Scholar
  14. 14.
    Velasco, M.V., Ford, J.L., Rowe, P., Rajabi-Siahboomi, A.R.: Influence of drug:hydroxypropylmethycellulose ratio, drug and polymer particle size and compression force on the release of diclofenac sodium from HPMC tablets. J. Control. Release 57, 75–85 (1999)CrossRefGoogle Scholar
  15. 15.
    Bekerrs, O., Uijtendaal, E.V., Beijnen, J.H., Bult, A., Underberg, W.J.M.: Cyclodextrins in the pharmaceutical field. Drug Dev. Ind. Pharm. 17, 1503–1549 (1991)CrossRefGoogle Scholar
  16. 16.
    George, S.J., Vasudevan, D.T.: Studies on the preparation, characterization and solubility of 2-HP-β-cyclodextrin-meclizine HCl inclusion complexes. J. Young Pharm. 4, 220–227 (2012)CrossRefGoogle Scholar
  17. 17.
    Abosehmah-Albidy, A.Z., York, P.W.V., Losowsky, M.S., Chrystyn, H.: Improved bioavailability and clinical response in patients with chronic liver dis-ease following the administration of a spironolactone: Cyclodextrin complex. Br. J. Clin. Pharmacol. 44, 35–39 (1997)CrossRefGoogle Scholar
  18. 18.
    Ammar, H.O., Ghorab, M., El-Nahhas, S.A., Omar, S.M., Ghorab, M.M.: Improvement of some pharmaceutical properties of drugs by cyclodextrin complexation, part 5. Theophylline. Pharm. 54, 42–46 (1996)Google Scholar
  19. 19.
    Hannay, J.B., Hogarth, J.: On the solubility of solids in gases. Proc. R. Soc. Lond. 29, 324–326 (1879)CrossRefGoogle Scholar
  20. 20.
    Higuchi, T., Connors, K.A.: Phase-solubility techniques. Adv. Anal. Chem. Instr. 4, 117–122 (1965)Google Scholar
  21. 21.
    Grillo, R., Melo, N.F.S., Fraceto, L.F., Brito, C.L., Trossini, G.H.G., Menezes, C.M.S., Ferreira, E.I., Moraes, C.M.: Caracterização físico-química de complexo de inclusão entre hidroximetilnitrofurazona e hidroxipropil-β-ciclodextrina. Quim. Nova 31, 290–295 (2008)CrossRefGoogle Scholar
  22. 22.
    Soares-Sobrinho, J.L., Santos, F.L.A., Lyra, M.A.M., Alves, L.D.S., Rolim, L.A., Lima, A.A.N., Nunes, L.C.C., Soares, M.F.R., Rolim-Neto, P.J., Torres-Labandeira, J.J.: Benznidazole drug delivery by binary and multicomponent inclusion complexes using cyclodextrins and polymers. Carbohydr. Polym. 89, 323–330 (2012)CrossRefGoogle Scholar
  23. 23.
    Klamt, A., Schüürmann, G.: COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 2, 799–805 (1993)CrossRefGoogle Scholar
  24. 24.
    Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E.: UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004)CrossRefGoogle Scholar
  25. 25.
    De Jesus, M.B., Pinto, L.M.A., Fraceto, L.F., Takahata, Y., Lino, A.C.S., Jaime, C., De Paula, E.: Theoretical and experimental study of a praziquantel and—cyclodextrin inclusion complex using molecular mechanic calculations and 1H—nuclear magnetic resonance. J. Pharm. Biomed. Anal. 41, 1428–1432 (2006)CrossRefGoogle Scholar
  26. 26.
    Becket, G., Schep, L.J., Tan, M.Y.: Improvement of the in vitro dissolution of praziquantel by complexation with a-, b- and g-cyclodextrins. Int. J. Pharm. 179, 65–71 (1999)CrossRefGoogle Scholar
  27. 27.
    Loftsson, T., Hreinsdóttir, D., Másson, M.: Evaluation of cyclodextrin solubilization of drugs. Int. J. Pharm. 302, 18–28 (2005)CrossRefGoogle Scholar
  28. 28.
    Sherje, A.P., Londhe, V.: Ternary inclusion complex of paliperidone with β-cyclodextrin and hydrophilic polymer for solubility and dissolution enhancement. J. Pharm. Innov. 10, 324–334 (2015)CrossRefGoogle Scholar
  29. 29.
    Prabu, S., Swaminathan, M., Sivakumar, K., Rajamohan, R.: Preparation, characterization and molecular modeling studies of the inclusion complex of Caffeine with Beta-cyclodextrin. J. Mol. Struct. 1099, 616–624 (2015)CrossRefGoogle Scholar
  30. 30.
    Zhang, W., Li, X., Yu, T., Yuan, L., Rao, G., Li, D., Mu, C.: Preparation, physicochemical characterization and release behavior of the inclusion complex of trans-anethole and β-cyclodextrin. Food Res. Int. 74, 55–62 (2015)CrossRefGoogle Scholar
  31. 31.
    Rama, A.C.R., Veiga, F., Figueiredo, I.V., Sousa, A., Caramona, M.: Aspectos biofarmacêuticas da formulação de medicamentos para neonatos. Fundamentos da complexação de indometacina com hidroxipropil-ß-ciclodextrina para tratamento oral do fechamento do canal arterial. Braz. J. Pharm. Sci. 41, 281–299 (2005)Google Scholar
  32. 32.
    Patel, A.R., Vavia, P.R.: Effect of hydrophilic polymer on solubilization of fenofibrate by cyclodextrin complexation. J. Incl. Phenom. Macrocycl. Chem. 56, 247–251 (2006)CrossRefGoogle Scholar
  33. 33.
    Loftsson, T., Fribriksdbttir, H., Thbrisdbttir, S., Stefinsson, E.: The effect of hydroxypropyl methylcellulose on the release of dexamethasone from aqueous 2-hydroxypropyl-P-cyclodextrin formulations. Int. J. Pharm. 104, 181–184 (1994)CrossRefGoogle Scholar
  34. 34.
    Maragos, S., Archontaki, H., Macheras, P., Valsami, G.: Effect of cyclodextrin complexation on the aqueous solubility and solubility/dose ratio of praziquantel. PharmSciTech 10, 1444–1451 (2009)CrossRefGoogle Scholar
  35. 35.
    Loftsson, T.: Cyclodextrins Complexation. United States Patent 5, 472–954 (1995)Google Scholar
  36. 36.
    Cappello, B., Di Maio, C., Iervolino, M., Miro, A., Calignano, A.: Etodolac/cyclodextrin formulations: physicochemical characterization and in vivo pharmacological studies. Drug Dev. Ind. Pharm. 35, 877–886 (2009)CrossRefGoogle Scholar
  37. 37.
    Novák, C., Éhen, Z., Fodor, M., Jicsinszky, L., Orgoványi, J.: Application of combined thermoanalytical techniques in the investigation of cyclodextrin inclusion complexes. J. Therm. Anal. Calorim. 84, 693–701 (2006)CrossRefGoogle Scholar
  38. 38.
    Araújo, M.V.G., Vieira, E.K.B., Lázaro, G.S., Conegerob, L.S., Ferreira, O.P., Almeida, L.E., Barreto, L.S., Costa Jr, N.B., Gimenez, I.F.: Inclusion complexes of pyrimethamine in 2-hydroxypropyl-β-cyclodextrin: characterization, phase solubility and molecular modeling. Bioorg. Med. Chem. 15, 5752–5759 (2007)CrossRefGoogle Scholar
  39. 39.
    Mainardes, R.M., Urban, M.C., Cinto, P.O., Chaud, M.V., Evangelista, R.C., Gremião, M.P.: Lipossomes and micro/nanoparticles as colloidal carriers for nasal drug delivery. Curr. Drug Deliv. 3, 275–285 (2006)CrossRefGoogle Scholar
  40. 40.
    Liu, Y., Wang, X., Wang, J.K., Ching, C.B.: Structural characterization and enantioseparation of the chiral compound praziquantel. J. Pharm. Sci. 93, 3039–3046 (2004)CrossRefGoogle Scholar
  41. 41.
    Giordano, F., Novák, C., Moyano, J.R.: Thermal analysis of cyclodextrin and their inclusion compounds. Thermochim. Acta 380, 123–151 (2001)CrossRefGoogle Scholar
  42. 42.
    Frömming, K.H., Szejtli, J.: Cyclodextrins in Pharmacy, p. 224. Kluwer Academic Publishers, Dordrecht (1994)CrossRefGoogle Scholar
  43. 43.
    Stephenson, G.A., Forbes, R.A., Reutzel-Edens, S.M.: Characterization of the solid state: quantitative issues. Adv. Drug Deliv. Rev. 48, 67–90 (2001)CrossRefGoogle Scholar
  44. 44.
    Phadnis, N.V., Cavatur, R.K., Suryanarayanan, R.: Identification of drugs in pharmaceutical dosage forms by X-ray powder diffractometry. J. Pharm. Biomed. Anal. 15, 929–943 (1997)CrossRefGoogle Scholar
  45. 45.
    Veiga, F.J.B., Pecorelli, C.C.M.F., Ribeiro, S.S.L.: As ciclodextrinas em tecnologia farmacêutica. Minerva Coimbra Editora (2006)Google Scholar
  46. 46.
    Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998)CrossRefGoogle Scholar
  47. 47.
    Cheng, L., Lei, L., Guo, S.: In vitro and in vivo evaluation of praziquantel loaded implants based on PEG/PCL blends. Int. J. Pharm. 387, 129–138 (2010)CrossRefGoogle Scholar
  48. 48.
    Sinha, V.R., Anitha, R., Ghosh, S., Amita, Kumria, R., Bhinge, J.R., Kumar, M.: Physicochemical characterization and in vitro dissolution behaviour of celecoxib-β-cyclodextrin inclusion complexes. Acta Pharm. 57, 47–60 (2007)CrossRefGoogle Scholar
  49. 49.
    Figueiras, A., Carvalho, R.A., Ribeiro, L., Torres-Labandeira, J.J., Veiga, F.J.: Solid-state characterization and dissolution profiles of the inclusion complexes of omeprazole with native and chemically modified β-cyclodextrin. Eur. J. Pharm. Biopharm. 67, 531–539 (2007)CrossRefGoogle Scholar
  50. 50.
    Ribeiro, L., Loftsson, T., Ferreira, D., Veiga, F.: Investigation and physicochemical characterization of vinpocetine-sulfobutylether b-cyclodextrin binary and ternary complexes. Chem. Pharm. Bull. 51, 914–922 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Layany Carolyny da Silva Mourão
    • 1
  • Daiane Rafaela M. Ribeiro Batista
    • 1
  • Sara Braga Honorato
    • 2
  • Alejandro Pedro Ayala
    • 2
  • Waldenice de Alencar Morais
    • 1
  • Euzébio Guimarães Barbosa
    • 3
  • Fernanda Nervo Raffin
    • 1
  • Túlio Flávio Accioly de Lima e Moura
    • 1
    Email author
  1. 1.Laboratory of Drug Development, Pharmacy Department, Health Sciences CenterFederal University of Rio Grande do NorteNatalBrazil
  2. 2.Laboratory of Vibrational Spectroscopy, Physics Department, Bloco 922, Sciences Center, Campus do PiciFederal University of CearáFortalezaBrazil
  3. 3.Laboratoty of Chemistry, Pharmacy Department, Health Sciences CenterFederal University of Rio Grande do NorteNatalBrazil

Personalised recommendations