One-pot synthesis–assembly–separation of cucurbit[6]uril via SO3H-functionalized ionic liquids

  • Xiao Jiang
  • Peipei Li
  • Xiumei Liu
  • Xinwen Guo
  • Li Liu
Short Communication

Abstract

A novel microwave-assisted route to synthesize cucurbit[n]uril in SO3H-functionalized ionic liquids was reported, which enabled the automatic separation of cucurbit[6]uril through anion assembly. For the first time, the route has realized synthesis–assembly–separation of cucurbit[6]uril in one pot. The reaction yield and separation efficiency can be tuned by choice of anionic groups in ionic liquids.

Keywords

Supramolecular Cucurbituril Ionic liquid Anion Microwave 

Supplementary material

10847_2014_426_MOESM1_ESM.doc (50 kb)
Supplementary material 1 (DOC 50 kb)

References

  1. 1.
    Behrend, R., Meyer, E., Rusche, F.: Condensation products from glycoluril and formaldehyde. Justus Liebigs Ann. Chem. 339, 1–37 (1905)CrossRefGoogle Scholar
  2. 2.
    Freeman, W.A., Mock, W.L., Shih, N.: Cucurbituril. J. Am. Chem. Soc. 103, 7367–7368 (1981)CrossRefGoogle Scholar
  3. 3.
    Kim, J., Jung, I.-S., Kim, S.-Y., Lee, E., Kang, J.-K., Sakamoto, S., Yamaguchi, K., Kim, K.: New cucurbituril homologues: synthesis, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8). J. Am. Chem. Soc. 122, 540–541 (2000)CrossRefGoogle Scholar
  4. 4.
    Day, A.I., Blanch, R.J., Arnold, A.P., Lorenzo, S., Lewis, G.R., Dance, I.: A cucurbituril-based gyroscane: a new supramolecular form. Angew. Chem. Int. Ed. 41, 275–277 (2002)CrossRefGoogle Scholar
  5. 5.
    Cheng, X., Liang, L., Chen, K., Ji, N., Xiao, X., Zhang, J., Zhang, Y., Xue, S., Zhu, Q., Ni, X., Tao, Z.: Twisted cucurbit[14]uril. Angew. Chem. Int. Ed. 52, 7252–7255 (2013)CrossRefGoogle Scholar
  6. 6.
    Lagona, J., Mukhopadhyay, P., Chakrabarti, S., Isaacs, L.: The cucurbit[n]uril family. Angew. Chem. Int. Ed. 44, 4844–4870 (2005)CrossRefGoogle Scholar
  7. 7.
    Day, A., Arnold, A.P., Blanch, R.J., Snushall, B.: Controlling factors in the synthesis of cucurbituril and its homologues. J. Org. Chem. 66, 8094–8100 (2001)CrossRefGoogle Scholar
  8. 8.
    Day, A.I., Blanch, R.J., Coe, A., Arnold, A.P.: The effects of alkali metal cations on product distributions in cucurbit[n]uril synthesis. J. Incl. Phenom. Macrocycl. Chem. 43, 247–250 (2002)CrossRefGoogle Scholar
  9. 9.
    Blanch, R.J., Sleeman, A.J., White, T.J., Arnold, A.P., Day, A.I.: Cucurbit[7]uril and o-carborane self-assemble to form a molecular ball bearing. Nano Lett. 2, 147–149 (2002)CrossRefGoogle Scholar
  10. 10.
    Welton, T.: Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2083 (1999)CrossRefGoogle Scholar
  11. 11.
    Zhao, N., Liu, L., Biedermann, F., Scherman, O.A.: Binding studies on CB[6] with a series of 1-alkyl-3-methylimidazolium ionic liquids in an aqueous system. Chem. Asian J. 5, 530–537 (2010)CrossRefGoogle Scholar
  12. 12.
    Jiao, D., Zhao, N., Scherman, O.A.: A “green” method for isolation of cucurbit[7]uril via a solid state metathesis reaction. Chem. Commun. 46, 2007–2009 (2010)CrossRefGoogle Scholar
  13. 13.
    Liu, L., Nouvel, N., Scherman, O.A.: Controlled catch and release of small molecules with cucurbit[6]uril via a kinetic trap. Chem. Commun. 22, 3243–3245 (2009)CrossRefGoogle Scholar
  14. 14.
    Cole, A.C., Jensen, J.L., Ntai, I., Tran, K.L.T., Weaver, K.J., Forbes, D.C., Davis, J.H.: Novel brønsted acidic ionic liquids and their use as dual solvent-catalysts. J. Am. Chem. Soc. 124, 5962–5963 (2002)CrossRefGoogle Scholar
  15. 15.
    Liu, X., Liu, M., Guo, X., Zhou, J.: SO3H-functionalized ionic liquids for selective alkylation of m-cresol with tert-butanol. Catal. Commun. 9, 1–7 (2008)CrossRefGoogle Scholar
  16. 16.
    Hoffmann, H., Nuchter, M., Ondruschka, B., Wasserscheid, P.: Ionic liquids and their heating behaviour during microwave irradiation—a state of the art report and challenge to assessment. Green Chem. 5, 296–299 (2003)CrossRefGoogle Scholar
  17. 17.
    Polshettiwar, V., Varma, R.S.: Microwave-assisted organic synthesis and transformations using benign reaction media. Acc. Chem. Res. 41, 629–639 (2008)CrossRefGoogle Scholar
  18. 18.
    Lew, A., Krutzik, P.O., Hart, M.E., Chamberlin, A.R.: Increasing rates of reaction: microwave-assisted organic synthesis for combinatorial chemistry. J. Comb. Chem. 4, 95–105 (2002)CrossRefGoogle Scholar
  19. 19.
    Li, H., Yu, S., Liu, F., Xie, C., Li, L.: Synthesis of dioctyl phthalate using acid functionalized ionic liquid as catalyst. Catal. Commun. 8, 1759–1762 (2007)CrossRefGoogle Scholar
  20. 20.
    Liu, L., Jiang, X., Zhang, J.: Anion-linked cucurbit[6]uril frameworks formed by microwave-assisted synthesis in ionic liquids. CrystEngComm. 12, 3445–3447 (2010)CrossRefGoogle Scholar
  21. 21.
    Wheate, N.J., Patel, N., Sutcliffe, O.B.: Microwave synthesis of cucurbit[n]urils. Future. Med. Chem. 2, 231–236 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Xiao Jiang
    • 1
  • Peipei Li
    • 2
  • Xiumei Liu
    • 2
  • Xinwen Guo
    • 1
  • Li Liu
    • 1
  1. 1.State Key Laboratory of Fine ChemicalsDalian University of TechnologyDalianChina
  2. 2.Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina

Personalised recommendations