Investigating the effect of randomly methylated β-cyclodextrin/block copolymer molar ratio on the template-directed preparation of mesoporous alumina with tailored porosity

  • Rudina Bleta
  • Cécile Machut
  • Bastien Léger
  • Eric Monflier
  • Anne Ponchel
Original Article


Supramolecular assemblies formed between cyclodextrins and block copolymers can be efficiently used as templates for the preparation of mesoporous materials with controlled porosity. In this work, we use dynamic light scattering (DLS) and viscosity measurements to follow the variations occurring in the size and morphology of the triblock copolymer poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (P123) micelles in the presence of various amounts of randomly methylated β-cyclodextrin (RAMEB). The results obtained with a series of solution compositions reveal that the cyclodextrin-to-copolymer (RAMEB/P123) molar ratio plays a crucial role in the growth rate of the micelles. At low RAMEB/P123 molar ratios (below ~7.5), a swelling effect of the cyclodextrin in the P123 micelles is noticed together with a modification of the micellar curvature from spherical to ellipsoidal. At high molar ratios (~7.5 and above), an abrupt transition toward large supramolecular assemblies, which no longer resemble micelles, occurs. When the RAMEB-swollen P123 micelles are used as templates to direct the self-assembly of colloidal boehmite nanoparticles, mesoporous γ-Al2O3 materials with high surface areas (360–400 m2/g), tunable pore sizes (10–20 nm), large pore volumes (1.3–2.0 cm3/g) and fiberlike morphologies are obtained under mild conditions. The composition of the mixed micellar solution, in particular the cyclodextrin-to-copolymer molar ratio, appears to be a key factor in controlling the porosity of alumina.


Methylated β-cyclodextrin Pluronic P123 Micelles Sol–gel Mesoporous materials 



The TEM facility in Lille (France) is supported by the Conseil Regional du Nord-Pas de Calais and the European Regional Development Fund (ERDF). The ERDF, CNRS, Région Nord Pas-de-Calais and Ministère de l’Education Nationale de l’Enseignement Supérieur et de la Recherche are acknowledged for fundings of the X-ray diffractometer. We thank Laurence Burylo (UCCS, University of Lille) as well as Dominique Prevost (UCCS, Artois) for technical assistance in XRD measurements and gravimetric analyses respectively.

Supplementary material

10847_2014_405_MOESM1_ESM.docx (133 kb)
Supplementary material 1 (DOCX 132 kb)


  1. 1.
    Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S.: Ordered mesoporous molecular sieves synthesized by a liquid–crystal template mechanism. Nature 359, 710–712 (1992)CrossRefGoogle Scholar
  2. 2.
    Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.-W., Olson, D.H., Sheppard, E.W., McCullen, S.B., Higgins, J.B., Schlenker, J.L.: A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834–10843 (1992)CrossRefGoogle Scholar
  3. 3.
    Su, B.L., Sanchez, C., Yang, X.Y. (eds.): Hierarchically Structured Porous Materials. From Nanoscience to Catalysis, Separation, Optics, Energy, and Life Science. Wiley-VCH, Weinheim (2012)Google Scholar
  4. 4.
    Colilla, M., González, B., Vallet-Regí, M.: Mesoporous silica nanoparticles for the design of smart delivery nanodevices. Biomater. Sci. 1, 114–134 (2013)CrossRefGoogle Scholar
  5. 5.
    Corma, A.: From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 97(6), 2373–2420 (1997)CrossRefGoogle Scholar
  6. 6.
    Pérez-Ramírez, J., Christensen, C.H., Egeblad, K., Christensend, C.H., Groen, J.C.: Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem. Soc. Rev. 37, 2530–2542 (2008)CrossRefGoogle Scholar
  7. 7.
    Bell, A.T.: The impact of nanoscience on heterogeneous catalysis. Science 299(5613), 1688–1691 (2003)CrossRefGoogle Scholar
  8. 8.
    Kruk, M.: Access to ultralarge-pore ordered mesoporous materials through selection of surfactant/swelling-agent micellar templates. Acc. Chem. Res. 45, 1678–1687 (2012)CrossRefGoogle Scholar
  9. 9.
    Bleta, R., Alphonse, P., Lorenzato, L.: Nanoparticle route for the preparation in aqueous medium of mesoporous TiO2 with controlled porosity and crystalline framework. J. Phys. Chem. C 114, 2039–2048 (2010)CrossRefGoogle Scholar
  10. 10.
    Velev, O.D., Kaler, E.W.: Structured porous materials via colloidal crystal templating: from inorganic oxides to metals. Adv. Mater. 12(7), 531–534 (2000)CrossRefGoogle Scholar
  11. 11.
    Carn, F., Colin, A., Achard, M.F., Deleuze, H., Sellier, E., Birot, M., Backov, R.: Inorganic monoliths hierarchically textured via concentrated direct emulsion and micellar templates. J. Mater. Chem. 14, 1370–1376 (2004)CrossRefGoogle Scholar
  12. 12.
    Huang, L., Yan, X., Kruk, M.: Synthesis of ultralarge-pore FDU-12 silica with face-centered cubic structure. Langmuir 26, 14871–14878 (2010)CrossRefGoogle Scholar
  13. 13.
    Fan, J., Yu, C., Lei, J., Zhang, Q., Li, T., Tu, B., Zhou, W., Zhao, D.: Low-temperature strategy to synthesize highly ordered mesoporous silicas with very large pores. J. Am. Chem. Soc. 127, 10794–10795 (2005)CrossRefGoogle Scholar
  14. 14.
    Polarz, S., Smarsly, B., Bronstein, L., Antonietti, M.: From cyclodextrin assemblies to porous materials by silica templating. Angew. Chem. Int. Ed. 40, 4417–4421 (2001)CrossRefGoogle Scholar
  15. 15.
    Han, B.H., Antonietti, M.: Cyclodextrin-based pseudopolyrotaxanes as templates for the generation of porous silica materials. Chem. Mater. 14, 3477–3485 (2002)CrossRefGoogle Scholar
  16. 16.
    Han, B.H., Smarsly, B., Gruber, C., Wenz, G.: Towards porous silica materials via nanocasting of stable pseudopolyrotaxanes from α-cyclodextrin and polyamines. Microporous Mesoporous Mater. 66, 127–132 (2003)CrossRefGoogle Scholar
  17. 17.
    Niesz, K., Yang, P., Somorjai, G.A.: Sol–gel synthesis of ordered mesoporous alumina. Chem. Commun. 15, 1986–1987 (2005)CrossRefGoogle Scholar
  18. 18.
    Misra, C.: Industrial alumina chemicals. ACS Monograph 184. American Chemical Society, Washington, DC (1986)Google Scholar
  19. 19.
    Radhakrishnan, R., Oyama, S.T., Chen, J.G., Asakura, K.: Electron transfer effects in ozone decomposition on supported manganese oxide. J. Phys. Chem. B 105, 4245–4253 (2001)CrossRefGoogle Scholar
  20. 20.
    Schüth, F., Unger, K.: In: Ertl, G., Knözinger, H., Weitkamp, J. (eds.) Preparation of Solid Catalysts, pp. 77–80. Wiley-VCH, Weinheim (1999)Google Scholar
  21. 21.
    Fujita, H., Ooya, T., Kurisawa, M., Mori, H., Terano, M., Yui, N.: Thermally switchable polyrotaxane as a model of stimuli-responsive supramolecules for nano-scale devices. Macromol. Rapid Commun. 17, 509–515 (1996)CrossRefGoogle Scholar
  22. 22.
    Fujita, H., Ooya, T., Yui, N.: Thermally induced localization of cyclodextrins in a polyrotaxane consisting of β-cyclodextrins and poly(ethylene glycol)–poly(propylene glycol) triblock copolymer. Macromolecules 32, 2534–2541 (1999)CrossRefGoogle Scholar
  23. 23.
    Tsai, C.C., Leng, S., Jeong, K.U., Van Horn, R.M., Wang, C.L., Zhang, W.B., Graham, M.J., Huang, J., Ho, R.M., Chen, Y., Lotz, B., Cheng, S.Z.D.: Supramolecular structure of β-Cyclodextrin and poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) inclusion complexes. Macromolecules 43, 9454–9461 (2010)CrossRefGoogle Scholar
  24. 24.
    Perry, C., Hebraud, P., Gernigon, V., Brochon, C., Lapp, A., Lindner, P., Schlatter, G.: Pluronic and β-cyclodextrin in water: from swollen micelles to self-assembled crystalline platelets. Soft Matter 7, 3502–3512 (2011)CrossRefGoogle Scholar
  25. 25.
    Valero, M., Grillo, I., Dreiss, C.A.: Rupture of Pluronic micelles by di-methylated β-cyclodextrin is not due to polypseudorotaxane formation. J. Phys. Chem. B 116, 1273–1281 (2012)CrossRefGoogle Scholar
  26. 26.
    Holmqvist, P., Alexandridis, P., Lindman, B.: Modification of the microstructure in block copolymer-water-“oil” systems by varying the copolymer composition and the “oil” type: small-angle X-ray scattering and deuterium-NMR investigation. J. Phys. Chem B 102, 1149–1158 (1998)CrossRefGoogle Scholar
  27. 27.
    Bleta, R., Machut, C., Léger, B., Monflier, E., Ponchel, A.: Coassembly of block copolymer and randomly methylated β-cyclodextrin: from swollen micelles to mesoporous alumina with tunable pore size. Macromolecules 46, 5672–5683 (2013)CrossRefGoogle Scholar
  28. 28.
    Bleta, R., Alphonse, P., Pin, L., Gressier, M., Menu, M.J.: An efficient route to aqueous phase synthesis of nanocrystalline γ-Al2O3 with high porosity: from stable boehmite colloids to large pore mesoporous alumina. J. Colloid Interface Sci. 367, 120–128 (2012)CrossRefGoogle Scholar
  29. 29.
    Yoldas, B.E.: Alumina sol preparation from alkoxides. Am. Ceram. Soc. Bull. 54, 289–290 (1975)Google Scholar
  30. 30.
    Berne, B.J., Pecora, R.: Dynamic Light Scattering with Applications to Chemistry, Biology and Physics, 2nd edn. Dover Publications, New York (2000)Google Scholar
  31. 31.
    Provencher, S.W.: A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput. Phys. Commun. 27, 213–227 (1982)CrossRefGoogle Scholar
  32. 32.
    Evans, R., Marconi, U.M.B., Tarazona, P.: Capillary condensation and adsorption in cylindrical and slit-like pores. J. Chem. Soc., Faraday Trans. 2(82), 1763–1787 (1986)CrossRefGoogle Scholar
  33. 33.
    Alexandridis, P., Holzwarth, J.F., Hatton, T.A.: Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association. Macromolecules 27, 2414–2425 (1994)CrossRefGoogle Scholar
  34. 34.
    Kadam, Y., Ganguly, R., Kumbhakar, M., Aswal, V.K., Hassan, P.A., Bahadur, P.: Time dependent sphere-to-rod growth of the Pluronic micelles: investigating the role of core and corona solvation in determining the micellar growth rate. J. Phys. Chem. B 113, 16296–16302 (2009)CrossRefGoogle Scholar
  35. 35.
    Yang, Z.C., Zhang, Y., Kong, J.H., Wong, S.Y., Li, X., Wang, J.: Hollow carbon nanoparticles of tunable size and wall thickness by hydrothermal treatment of α-cyclodextrin templated by F127 block copolymers. Chem. Mater. 25, 704–710 (2013)CrossRefGoogle Scholar
  36. 36.
    Xu, H.N., Ma, S.F., Chen, W.: Unique role of β-cyclodextrin in modifying aggregation of Triton X-114 in aqueous solutions. Soft Matter 8, 3856–3863 (2012)CrossRefGoogle Scholar
  37. 37.
    Nambam, J.S., Philip, J.: Effects of interaction of ionic and nonionic surfactants on self-assembly of PEO–PPO–PEO triblock copolymer in aqueous solution. J. Phys. Chem. B 116, 1499–1507 (2012)CrossRefGoogle Scholar
  38. 38.
    Denkova, A.G., Mendes, E., Coppens, M.O.: Effects of salts and ethanol on the population and morphology of triblock copolymer micelles in solution. J. Phys. Chem. B 112, 793–801 (2008)CrossRefGoogle Scholar
  39. 39.
    Wanka, G., Hoffmann, H., Ulbricht, W.: Phase Diagrams and aggregation behavior of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) triblock copolymers in aqueous solutions. Macromolecules 27, 4145–4159 (1994)CrossRefGoogle Scholar
  40. 40.
    Ganguly, R., Choudhury, N., Aswal, V.K., Hassan, P.A.: Pluronic L64 micelles near cloud point: investigating the role of micellar growth and interaction in critical concentration fluctuation and percolation. J. Phys. Chem. B 113, 668–675 (2009)CrossRefGoogle Scholar
  41. 41.
    Barnes, H.A.: Thixotropy—a review. J. Non-Newtonian Fluid Mech. 7, 1–33 (1997)CrossRefGoogle Scholar
  42. 42.
    Bleta, R., Jaubert, O., Gressier, M., Menu, M.J.: Rheological behaviour and spectroscopic investigations of cerium-modified AlO(OH) colloidal suspensions. J. Colloid Interface Sci. 363, 557–565 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Rudina Bleta
    • 1
    • 2
    • 3
  • Cécile Machut
    • 1
    • 2
    • 3
  • Bastien Léger
    • 1
    • 2
    • 3
  • Eric Monflier
    • 1
    • 2
    • 3
  • Anne Ponchel
    • 1
    • 2
    • 3
  1. 1.Université Lille Nord de FranceLilleFrance
  2. 2.UArtois, UCCSFaculté des Sciences Jean PerrinLensFrance
  3. 3.CNRSVilleneuve d’AscqFrance

Personalised recommendations