New synthetic methods of π-conjugated inclusion complexes with high conductivity

Review Article

Abstract

A new method for the synthesis of an insulated π-conjugated molecule was developed via the sequential self-inclusion of π-conjugated guest branched permethylated α-cyclodextrin followed by the elongation of the π-conjugated unit. Covering a single π-conjugated wire by an α-cyclodextrin derivatives can suppress conductance fluctuation. The insulated π-conjugated molecules were utilized in the synthesis of highly conductive zigzag- and functionalized-insulated molecular wires.

Keywords

π-Conjugated molecular wire Molecular electronics Functionalized molecular wire Cyclodextrin Poly(phenylene ethynylene) Rotaxane [1]Rotaxane Polyrotaxane 

Notes

Acknowledgments

Author expresses special thanks for all of co-workers for their great contributions and the organizing committee of Host–Guest and Supramolecular Chemistry Society, Japan for giving him the HGCS Japan Award of Excellence 2013 and the opportunity to write this article. The author is grateful to Professors Manabu Kiguchi (Tokyo Institute of Technology), Tomofumi Tada (Tokyo Institute of Technology), and Shu Seki (Osaka University) for their valuable suggestions and discussions. The author also thanks all of the collaborators. Financial support from the Funding Program for Next Generation World-Leading Researchers and the PRESTO program of the Japan Science and Technology Agency. This is a paper selected for the ‘‘HGCS Japan Award of Excellence 2013’’.

References

  1. 1.
    Moore, G.E.: Cramming more components onto integrated circuits. Electron. Mag. 38, 114–117 (1965)Google Scholar
  2. 2.
    Jalabert, A., Amara, A., Clermidy, F.: Molecular electronics materials, devices and applications. Springer (2008)Google Scholar
  3. 3.
    Petty, M. C.: Molecular electronics from principles to practice. Wiley (2007)Google Scholar
  4. 4.
    Taniguchi, M., Nojima, Y., Yokota, K., Terao, J., Sato, K., Kambe, N., Kawai, T.: Self-organized interconnect method for molecular devices. J. Am. Chem. Soc. 128, 15062–15063 (2006)CrossRefGoogle Scholar
  5. 5.
    Tang, J., Wang, Y., Klare, J.E., Tulevski, G.S., Wind, S.J., Nuckolls, C.: Encoding molecular-wire formation within nanoscale sockets. Angew. Chem. Int. Ed. 46, 3892–3895 (2007)CrossRefGoogle Scholar
  6. 6.
    Green, J.E., Choi, J.W., Boukai, A., Bunimovich, Y., Johnston-Halperin, E., DeIonno, E., Luo, Y., Sheriff, B.A., Xu, K., Shin, Y.S., Tseng, H.R., Stoddart, J.F., Heath, J.R.: A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 445, 414–417 (2007)CrossRefGoogle Scholar
  7. 7.
    Marquardt, C.W., Grunder Btaszczyk, S.A., Dehm, S., Hennrich, F., Löhneysen, H.V., Mayor, M., Krupke, R.: Electroluminescence from a single nanotube-molecule-nanotube junction. Nat. Nanotech. 5, 863–867 (2010)CrossRefGoogle Scholar
  8. 8.
    Weizmann, Y., Chenoweth, D.M., Swager, T.M.: DNA-CNT nanowire networks for DNA detection. J. Am. Chem. Soc. 133, 3238–3241 (2011)CrossRefGoogle Scholar
  9. 9.
    Song, H., Kim, Y., Jang, Y.H., Jeong, H., Reed, M.A., Lee, T.: Observation of molecular orbital gating. Nature 462, 1039–1043 (2009)CrossRefGoogle Scholar
  10. 10.
    Faramarzi, V., Niess, F., Moulin, E., Maaloum, M., Dayen, J.-F., Beaufrand, J.-B., Zanettini, S., Doudin, B., Giuseppone, N.: Light-triggered self-construction of supramolecular organic nanowires as metallic interconnects. Nat. Chem. 4, 485–490 (2012)CrossRefGoogle Scholar
  11. 11.
    Ashwell, G.J., Phillips, L.J., Robinson, B.J., Barnes, S.A., Williams, A.T., Urasinska-Wojcik, B., Lambert, C.J., Grace, I.M., Cox, T.I., Sage, I.C.: Synthesis of covalently linked molecular bridges between silicon electrodes in CMOS-based arrays of vertical Si/SiO2/Si nanogaps. Angew. Chem. Int. Ed. 50, 8722–8726 (2011)CrossRefGoogle Scholar
  12. 12.
    Chen, X., Braunschweig, A.B., Wiester, M.J., Yeganeh, S., Ratner, M.A., Mirkin, C.A.: Spectroscopic tracking of molecular transport junctions generated by using click chemistry. Angew. Chem. Int. Ed. 48, 5178–5181 (2009)CrossRefGoogle Scholar
  13. 13.
    Ashwell, G.J., Wierzchowiec, P., Bartlett, C.J., Buckle, P.D.: Molecular electronics: connection across nano-sized electrode gaps. Chem. Commun. 28(12), 1254–1256 (2007)CrossRefGoogle Scholar
  14. 14.
    Andrew, T.L., Swager, T.M.: Structure-property relationships for exciton transfer in conjugated polymers. J. Polym. Sci., Part B: Polym. Phys. 49, 476–498 (2011)CrossRefGoogle Scholar
  15. 15.
    Wenz, G. Inclusion Polymers. Springer (2009)Google Scholar
  16. 16.
    Frampton, M.J., Anderson, H.L.: Insulated molecular wires. Angew. Chem. Int. Ed. 46, 1028–1064 (2007)CrossRefGoogle Scholar
  17. 17.
    Yoshida, K., Shimomura, T., Ito, K., Hayakawa, R.: Inclusion complex formation of cyclodextrin and polyaniline. Langmuir 15, 910–913 (1999)CrossRefGoogle Scholar
  18. 18.
    Terao, J.: Permethylated cyclodextrin-based insulated molecular wires. Polym. Chem. 2, 2444–2452 (2011)CrossRefGoogle Scholar
  19. 19.
    Terao, J., Tsuda, S., Tanaka, Y., Okoshi, K., Fujihara, T., Tsuji, Y., Kambe, N.: Synthesis of organic-soluble conjugated polyrotaxanes by polymerization of linked rotaxanes. J. Am. Chem. Soc. 131, 16004–16005 (2009)CrossRefGoogle Scholar
  20. 20.
    Terao, J., Tanaka, Y., Tsuda, S., Kambe, N., Taniguchi, M., Kawai, T., Saeki, A., Seki, S.: Insulated molecular wire with highly conductive π-conjugated polymer core. J. Am. Chem. Soc. 131, 18046–18047 (2009)CrossRefGoogle Scholar
  21. 21.
    Terao, J., Ikai, K., Kambe, N., Seki, S., Saeki, A., Ohkoshi, K., Fujihara, T., Tsuji, Y.: Synthesis of a head-to-tail-type cyclodextrin-based insulated molecular wire. Chem. Commun. 47, 6816–6818 (2011)CrossRefGoogle Scholar
  22. 22.
    Cuevas, J. C., Scheer, E.: Molecular electronics, world scientific (2010)Google Scholar
  23. 23.
    Agrait, N., Yeyati, A.L., van Ruitenbeek, J.M.: Quantum properties of atomic-sized conductors. Phys. Rep. 377, 81–380 (2003)CrossRefGoogle Scholar
  24. 24.
    Xu, B., Tao, N.J.: Measurement of single molecule conductance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003)CrossRefGoogle Scholar
  25. 25.
    Wu, S., González, M.T., Huber, R., Grunder, S., Mayor, M., Schönenberger, C., Calame, M.: Molecular junctions based on aromatic coupling. Nat. Nanotech. 2008(3), 569–574 (2008)CrossRefGoogle Scholar
  26. 26.
    Tsuda, S., Terao, J., Kambe, N.: Synthesis of an organic-soluble π-conjugated [1]rotaxane. Chem. Lett. 38, 76–77 (2009)CrossRefGoogle Scholar
  27. 27.
    Kiguchi, M., Nakashima, S., Tada, T., Watanabe, S., Tsuda, S., Tsuji, Y., Terao, J.: Single-molecule conductance of π-conjugated rotaxane: new method for measuring stipulated electric conductance of π-conjugated molecular wire using STM break junction. Small 8, 726–730 (2012)CrossRefGoogle Scholar
  28. 28.
    Venkataraman, L., Klare, J.E., Tam, I.W., Nuckolls, C., Hybertsen, M.S., Steigerwald, M.L.: Single-molecule circuits with well-defined molecular conductance. Nano Lett. 6, 458–462 (2006)CrossRefGoogle Scholar
  29. 29.
    Terao, J., Wadahama, A., Fujihara, T., Tsuji, Y.: Synthesis of linked symmetrical [3]rotaxane having an oligomeric phenylene ethynylene unit as a π-guest via double Sonogashira cross-coupling. Chem. Lett. 39, 518–519 (2010)CrossRefGoogle Scholar
  30. 30.
    Terao, J., Wadahama, A., Matono, A., Tada, T., Watanabe, S., Seki, S., Fujihara, T., Tsuji, Y.: Design principle for increasing charge mobility of π-conjugated polymers using regularly localized molecular orbitals. Nat. Commun. 4, 1691 (2013)CrossRefGoogle Scholar
  31. 31.
    Grozema, F.C., Siebbeles, L.D.A., Warman, J.M., Seki, S., Tagawa, S., Scherf, U.: Hole conduction along molecular wires: σ-bonded silicon versus π-bond-conjugated carbon. Adv. Mater. 14, 228–231 (2002)CrossRefGoogle Scholar
  32. 32.
    Acharya, A., Seki, S., Saeki, A., Koizumi, Y., Tagawa, S.: Study of transport properties in fullerene-doped polysilane films using flash photolysis time-resolved microwave technique. Chem. Phys. Lett. 404, 356–360 (2005)CrossRefGoogle Scholar
  33. 33.
    Terao, J., Homma, K., Konoshima, Y., Imoto, R., Masai, H., Matsuda, W., Seki, S., Fujihara, T., Tsuji, Y.: Synthesis of functionalized insulated molecular wires by polymerization of an insulated π-conjugated monomer. Chem. Commun. 50(6), 658–660 (2014)CrossRefGoogle Scholar
  34. 34.
    Fujimoto, T., Sakata, Y., Kaneda, T.: The first janus [2]rotaxane. Chem. Commun. 2143–2144 (2000)Google Scholar
  35. 35.
    Zhang, G., Zhang, D., Guo, X., Zhu, D.: A new redox-fluorescence switch based on a triad with tetrathiafulvalene and anthracene units. Org. Lett. 6, 1209–12012 (2004)CrossRefGoogle Scholar
  36. 36.
    Chen, X., Braunschweig, A.B., Wiester, M.J., Yeganeh, S., Ratner, M.A., Mirkin, C.A.: Spectroscopic tracking of molecular transport junctions generated by using click chemistry. Angew. Chem. Int. Ed. 48, 5178–5181 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Energy and Hydrocarbon Chemistry, Graduate School of EngineeringKyoto UniversityKyotoJapan

Personalised recommendations