Advertisement

Determination of the inclusion complex constant between oleuropein and cyclodextrins by complexation theory

  • Carlos Eduardo Barão
  • Fátima Paiva-Martins
  • Gisella Maria Zanin
  • Flavio Faria De Moraes
Original Article

Abstract

Oleuropein (OLE) is a major phenolic compound of olive leaf (Olea europaea) and has many therapeutic properties associated with olive leaf extracts. This work concerns the determination of the inclusion complex constant between OLE and cyclodextrins (CDs), based on the competition of two guests for the CD cavity, one being a dye and the other OLE. The dye used was methylorange (MO) and pH 3 was selected, since MO molar absorptivity at 500 nm is at maximum in this condition. A solution of MO, OLE, and α-CD or β-CD, with citrate buffer was used for determining the absorbance values. From these data and by appropriate mathematical modeling, the equilibrium constant for the formation of OLE:CD complexes were obtained: for OLE:α-CD K = 1,352.4 L mol−1 (R 2 = 0.9975) and for OLE:β-CD K = 1,827.9 L mol−1 (R 2 = 0.9991). The results show that OLE has a greater affinity for β-CD than for α-CD and given the relatively high constants, OLE:CD complexes have potential for giving longer shelf lives for OLE medicinal and food additive preparations.

Keywords

Oleuropein Cyclodextrin Inclusion Complex 

Notes

Acknowledgments

We are grateful to the supporting institutions: CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and UEM (Universidade Estadual de Maringá).

References

  1. 1.
    Bekers, O., Uijtendaal, E.V., Beijnen, J.H., Bult, A., Underberg, W.J.M.: Cyclodextrins in the pharmaceutical field. Drug Dev. Ind. Pharm. 17, 1503–1549 (1991)CrossRefGoogle Scholar
  2. 2.
    Szejtli, J.: Cyclodextrin Technology, pp. 1–185. Kluwer Academic Publishers, Dordrecht (1988)Google Scholar
  3. 3.
    Walter, W.M., Fleming, H.P., Etchells, J.L.: Preparation of antimicrobial compounds by hydrolysis of oleuropein from green olives. Appl. Microbiol. 26(5), 773–776 (1973)Google Scholar
  4. 4.
    Efmorfopoulou, E., Rodis, P.: Complexation of oleuropein and trans-cinnamic acid with cyclodextrins. Chem. Nat. Compd. 40(4), 362–366 (2004)CrossRefGoogle Scholar
  5. 5.
    Martins, F.P., Pinto, M.: Isolation and characterization of a new hydroxytyrosol derivative from olive (Olea europaea) leaves. J. Agric. Food Chem. 56, 5582–5588 (2008)CrossRefGoogle Scholar
  6. 6.
    Zbidia, H., Salidob, S., Altarejosb, J., Perez-Bonillab, M., Bartegia, A., Rosado, J.A., Salido, G.M.: Olive tree wood phenolic compounds with human platelet antiaggregant properties. Blood Cells Mol. Dis. 42(3), 279–285 (2009)CrossRefGoogle Scholar
  7. 7.
    Carluccio, M.A., Siculella, L., Ancora, M.A., Massaro, M., Scoditti, E., Storelli, C., Visioli, F., Distante, A., De Caterina, R.: Olive oil and red wine antioxidant polyphenols inhibit endothelial activation. Arterioscler. Thromb. Vasc. Biol. 23, 622–629 (2003)CrossRefGoogle Scholar
  8. 8.
    Omar, S.H.: Oleuropein in olive and its pharmacological effects. Sci. Pharm. 78, 133–154 (2010)CrossRefGoogle Scholar
  9. 9.
    Andreadou, I., Iliodromitis, E.K., Mikros, E., Constantinou, M., Agalias, A., Magiatis, P., Skaltsounis, A.L., Kamber, E., Tsantili-Kakoulidou, A., Kremastinos, T.D.: The olive constituent oleuropein exhibits anti-ischemic, antioxidative, and hypolipidemic effects in anesthetized rabbits. J. Nutr. 138, 1074–1078 (2008)Google Scholar
  10. 10.
    Huang, S.L., Zhang, L., Huang, P.L., Chang, Y., Huang, P.L.: Anti-HIV activity of olive leaf extract (OLE) and modulation of host cell gene expression by HIV-1 infection and OLE treatment. Biochem. Biophys. Res. Commun. 307, 1029–1037 (2003)CrossRefGoogle Scholar
  11. 11.
    Watanabe, S.: Determinação da Constante de Complexação da Glicirrizina com a γ-Ciclodextrina p. 46 a 50. Master in Science dissertation, Universidade Estadual de Maringá (2005)Google Scholar
  12. 12.
    Watanabe, S., Zanin, G.M., De Moraes, F.F.:VIII Seminário de Hidrólise Enzimática de Biomassas, Maringá, 5 a 9 de dezembro de 2005, Oral work nº 50, p. 14 (2005)Google Scholar
  13. 13.
    Barão, C.E., Zanin, G.M., de Moraes, F.F.: Inclusão molecular da oleuropeína e do BHA (Butil Hidroxianisol) em Alfa e Beta Ciclodextrinas, pp. 38–57. Master in Science dissertation, Universidade Estadual de Maringá (2008)Google Scholar
  14. 14.
    Higuchi, T., Connors, K.A.: Phase solubility techniques. In: Nurnberg, H.W. (ed.) Advances in Analytical Chemistry and Instrumentation, pp. 117–212. Wiley Interscience, New York (1965)Google Scholar
  15. 15.
    Karathanos, V.T., Mourtzinos, I., Salta, F., Yannakopoulou, K., Chiou, A.: Encapsulation of olive leaf extract in β-cyclodextrin. J. Agric. Food Chem. 55, 8088–8094 (2007)CrossRefGoogle Scholar
  16. 16.
    Barão, C.E., Zanin, G.M., de Moraes, F.F.: Molecular inclusion of butylated hydroxyanisole (BHA) into alpha and beta cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 71, 179–187 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Carlos Eduardo Barão
    • 1
    • 2
  • Fátima Paiva-Martins
    • 3
  • Gisella Maria Zanin
    • 1
  • Flavio Faria De Moraes
    • 1
  1. 1.Departamento de Engenharia QuímicaUniversidade Estadual de MaringáMaringáBrazil
  2. 2.Instituto Federal do ParanáParanavaíBrazil
  3. 3.Departamento de QuímicaUniversidade do PortoPortoPortugal

Personalised recommendations