Solvent-free chemo-enzymatic synthesis of fatty acyl-β-cyclodextrin

  • Véronique Bonnet
  • Audrey Favrelle
  • Frédéric Aubry
  • Catherine Sarazin
  • Florence Djedaïni-Pilard
Original Article

Abstract

Lipase-catalyzed transesterifications were carried out without solvent and in mild conditions on permethylated β-cyclodextrins derivatives to obtain lipidyl-cyclodextrin, a new class of amphiphilic compounds with expected auto-assembly properties. Good conversion rate, of 6I-(N-hydroxyethylsuccinamido)-6I-deoxy-2I, 3I-di-O-methyl-hexakis (2II–VII,3II–VII,6II–VII-tri-O-methyl) cyclomaltoheptaose were obtained by using lipozyme as catalyst. Critical Aggregation Concentrations of these new derivatives of amphiphilic cyclodextrins (5.10−3 and 5.10−4 M) are in favor of an auto-association behavior. Finally, NMR experiments were carried out to evaluate the self-assembly of the compounds in water. The resulting supramolecular aggregates have potential to be used as nano-carriers for drug.

Graphical abstract

Keywords

Amphiphilic cyclodextrin Lipase Transesterification Critical aggregation concentration Aggregate 

References

  1. 1.
    Hirayama, F., Uekama, K.: Cyclodextrin based controlled drug release system. Adv. Drug Deliv. Rev. 36, 125–141 (1999)CrossRefGoogle Scholar
  2. 2.
    Roux, M., Perly, B., Djedaïni-Pilard, F.: Self-assemblies of amphiphilic cyclodextrins. Eur. Biophys. J. 36, 861–867 (2007)CrossRefGoogle Scholar
  3. 3.
    Sallas, F., Darcy, R.: Amphiphilic cyclodextrins—advances in synthesis and supramolecular chemistry. Eur. J. Org. Chem. 6, 957–969 (2008)CrossRefGoogle Scholar
  4. 4.
    Perret, F., Parrot-Lopez, H.: Amphiphilic cyclodextrins synthesis and characterization. In: Bilensoy, E. (ed.) Cyclodextrins in Pharmaceutics, Cosmetics and Biomedicine, pp 199–233. John Wiley and sons, London (2011)Google Scholar
  5. 5.
    Zhang, P., Ling, C.C., Coleman, A.W., Parrot-Lopez, H., Galons, H.: Formation of amphiphilic cyclodextrins via hydrophobic esterifications at the secondary hydroxyl face. Tetrahedron Lett. 32(24), 2769–2770 (1991)CrossRefGoogle Scholar
  6. 6.
    Ortega-Caballero, F., Mellet, C.O., Le Gourrierec, L.C., Guilloteau, N., Di Giorgio, C., Vierling, P., Defaye, J., Garcia Fernandez, J.M.: Tailoring beta-cyclodextrin for DNA complexation and delivery by homogeneous functionalization at the secondary face. Org. Lett. 10, 5143–5146 (2008)CrossRefGoogle Scholar
  7. 7.
    Choisnard, L., Gèze, A., Yaméogo, B.G.J., Putaux, J.L., Wouessidjewe, D.: Miscellaneous nanoaggregates made of beta-CD esters synthesised by an enzymatic pathway. Int. J. Pharm. 344, 26–32 (2007)CrossRefGoogle Scholar
  8. 8.
    Gallois-Montbrun, D., Thiebault, N., Moreau, V., Bas, G.L., Archambault, J.-C., Lesieur, S., Djedaıni-Pilard, F.: Direct synthesis of novel amphiphilic cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 57, 131–135 (2007)CrossRefGoogle Scholar
  9. 9.
    Akkara, J.A., Kaplan, D.L., Bruno, F.F., Dordick, J.S.: Transesterification of insoluble polysaccharides.US 6,063,916, US Patent,16 May 2000Google Scholar
  10. 10.
    Pedersen, N.R., Kristensen, J.B., Bauw, G., Ravoo, B.J., Darcy, R., Larsen, K.L., Pedersen, L.H.: Thermolysin catalyses the synthesis of cyclodextrin esters in DMSO. Tetrahedron Asymmetry 16, 615–622 (2005)CrossRefGoogle Scholar
  11. 11.
    Favrelle, A., Bonnet, V., Sarazin, C., Djedaıni-Pilard, F.: Novel chemo-enzymatic access to amphiphilic cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 57, 15–20 (2007)CrossRefGoogle Scholar
  12. 12.
    Lin, J., Creminon, C., Perly, B., Djedaini-Pilard, F.: New amphiphilic derivatives of cyclodextrins for the purpose of insertion in biological membranes: the “Cup and Ball” molecules. J. Chem. Soc. Perkin Trans. 2, 2639–2646 (1998)Google Scholar
  13. 13.
    Silva, O.F., Fernandez, M.A., Pennie, S.L., Gil, R.R., de Rossi, R.H.: Synthesis and characterization of an amphiphilic cyclodextrin, a micelle with two recognition sites. Langmuir 24, 3718–3726 (2008)CrossRefGoogle Scholar
  14. 14.
    Bonnet, V., Boyer, C., Langlois, V., Duval, R., Rabiller, C.: An efficient, regioselective and fast enzymatic glycosylation for cyclodextrins. Tetrahedron Lett. 44, 8987–8989 (2003)CrossRefGoogle Scholar
  15. 15.
    Favrelle, A., Bonnet, V., Avondo, C., Aubry, F., Djedaıni-Pilard, F., Sarazin, C.: Lipase-catalysed synthesis and characterization of novel lipidyl-cyclodextrins in solvent free medium. J. Mol. Catal. B Enzyme. 66, 224–227 (2010)CrossRefGoogle Scholar
  16. 16.
    Defaye, J., Crouzy, S., Evrard, N., Law H.: Procédé de préparation régiosélectif de dérivés monosulfonylés en C6 des CD. French Patent, WO 9961483 1999Google Scholar
  17. 17.
    Auzely-Velty, R., Pean, C., Djedaini-Pilard, F., Zemb, T., Perly, B.: Micellization of hydrophobically modified cyclodextrins: 2. Inclusion of guest molecules. Langmuir 17, 504–510 (2001)CrossRefGoogle Scholar
  18. 18.
    Angelova, A., Fajolles, C., Hocquelet, C., Djedaïni-Pilard, F., Lesieur, S., Bonnet, V., Perly, B., Lebas, G., Mauclaire, L.: Physico-chemical investigation of asymmetrical peptidolipidyl-cyclodextrins. J. Colloid Interface Sci. 322, 304–314 (2008)CrossRefGoogle Scholar
  19. 19.
    Galarneau, A., Mureseanu, M., Atger, S., Renard, G., Fajula, F.: Immobilization of lipase on silicas. Relevance of textural and interfacial properties on activity and selectivity. New J. Chem. 30, 562–571 (2006)CrossRefGoogle Scholar
  20. 20.
    Thiebault, N., Lesur, D., Moreau, V., Godé, P., Djedaïni-Pilard, F.: Efficient regioselective chemical modifications of maltotriose: an easy access to oligosaccharidic scaffold. Carbohydr. Res. 343, 2719–2728 (2008)CrossRefGoogle Scholar
  21. 21.
    Balzer, D.: Surfactant properties. In: Balzer, D., Lüders, H. (eds.) Surfactant Sciences Series Vol. 91, p. 85. Marcel Dekker, New York (2000)Google Scholar
  22. 22.
    Perly, B., Moutard, S., Djedaini-Pilard, F.: Amphiphilic cyclodextrins: from a general concept to properties and applications. PharmaChem 4, 4–9 (2005)Google Scholar
  23. 23.
    Gervaise, C., Bonnet, V., Wattraint, O., Aubry, F., Sarazin, C., Jaffrès, P.A., Djedaïni-Pilard, F.: Synthesis of lipophosphoramidyl-cyclodextrins and their supramolecular properties. Biochimie 94(1), 66–74 (2012)CrossRefGoogle Scholar
  24. 24.
    Djedaïni-Pilard, F., Azaroual-Bellanger, N., Gosnat, M., Vernet, D., Perly, B.: The potential formation of intramolecular inclusion complexes in peptido-cyclodextrins as evidenced by NMR. J. Chem. Soc. Perkin Trans II, 723–730 (1995)Google Scholar
  25. 25.
    Guerreros-Martinez, A., Gonzalez-Gaitano, G., Vinas, M.H., Tardojos, G.: Inclusion complexes between beta-cyclodextrin and a gemini surfactant in aqueous solution: an NMR study. J. Phys. Chem. B 110, 13819–13828 (2006)CrossRefGoogle Scholar
  26. 26.
    Xu, J., Tan, T., Kenne, L., Sandstrom, C.: The use of diffusion-ordered spectroscopy and complexation agents to analyze mixtures of catechins. New J Chem. 33, 1057–1063 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Véronique Bonnet
    • 1
  • Audrey Favrelle
    • 1
    • 2
  • Frédéric Aubry
    • 1
  • Catherine Sarazin
    • 2
  • Florence Djedaïni-Pilard
    • 1
  1. 1.Laboratoire des GlucidesFRE 3517 CNRS Université de Picardie Jules VerneAmiensFrance
  2. 2.Génie Enzymatique et Cellulaire, UMR 6022 CNRSUniversité de Picardie Jules VerneAmiensFrance

Personalised recommendations