A simple pyrene-based highly sensitive turn-on fluorescent chemodosimeter for Hg2+

Original Article

Abstract

A highly sensitive fluorescent turn-on probe specific for mercury ion has been developed on the basis of mercury ion-promoted hydrolysis of a pyrene-1-carbaldehyde hydrazone (1). The chemical conversion of 1, catalyzed by Hg2+ ions, was studied by using UV, fluorescence and 1H NMR spectroscopy, which clearly showed the conversion of 1 to highly fluorescent compound 1-pyrenecarboxaldehyde (2).

Keywords

Chemodosimeter Pyrene Hg2+ Hydrazone Ion-promoted hydrolysis 

Notes

Acknowledgments

The authors want to thank Prof. Kwang S. Kim for his support and encouragement throughout this work.

Supplementary material

10847_2012_218_MOESM1_ESM.doc (542 kb)
Supplementary material 1 (DOC 542 kb)

References

  1. 1.
    De Silva, A.P., Gunaratne, H.Q.N., Gunnlaugsson, T., Huxley, A.J.M., McCoy, C.P., Rademacher, J.T., Rice, T.E.: Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97, 1515–1566 (1997)CrossRefGoogle Scholar
  2. 2.
    Valeur, B., Leray, I.: Design principles of fluorescent molecular sensors for cation recognition. Coord. Chem. Rev. 205, 3–40 (2000)CrossRefGoogle Scholar
  3. 3.
    Amendola, V., Fabbrizzi, L., Mosca, L.: Anion recognition by hydrogen bonding: urea-based receptors. Chem. Soc. Rev. 39, 3889–3915 (2010)CrossRefGoogle Scholar
  4. 4.
    Wu, J., Liu, W., Ge, J., Zhang, H., Wang, P.: New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chem. Soc. Rev. 40, 3483–3495 (2011)CrossRefGoogle Scholar
  5. 5.
    Ahmed, N., Shirinfar, B., Geronimo, I., Kim, K.S.: Fluorescent imidazolium-based cyclophane for detection of guanosine-5′-triphosphate and Iin aqueous solution of physiological pH. Org. Lett. 13, 5476–5479 (2011)CrossRefGoogle Scholar
  6. 6.
    Ahmed, N., Geronimo, I., Hwang, I.-C., Singh, N.J., Kim, K.S.: cyclo-Bis(urea-3,6-dichlorocarbazole) as a chromogenic and fluorogenic receptor for anions and a selective sensor of zinc and copper cations. Chem. Eur. J. 17, 8542–8548 (2011)CrossRefGoogle Scholar
  7. 7.
    Chandra, V., Kim, K.S.: Highly selective adsorption of Hg2+ by a polypyrrole-reduced grapheme oxide composite. Chem. Commun. 47, 3942–3944 (2011)CrossRefGoogle Scholar
  8. 8.
    Ahmed, N., Shirinfar, B., Youn, I.S., Bist, A., Vangaru, S., Kim, K.S.: A highly selective fluorescent chemosensor for guanosine-5′-triphosphate via excimer formation in aqueous solution of physiological pH. Chem. Commun. 48, 2662–2664 (2012)CrossRefGoogle Scholar
  9. 9.
    Kim, H., Kang, J.: Iodide selective fluorescent anion receptor with two methylene bridged bis-imidazolium rings on naphthalene. Tetrahedron Lett. 46, 5443–5445 (2005)CrossRefGoogle Scholar
  10. 10.
    Park, J.-J., Kim, Y.H., Rhim, S., Kang, J.: Anion receptors with viologen molecular scaffold. Tetrahedron Lett. 53, 247–252 (2012)Google Scholar
  11. 11.
    Xu, Z., Singh, N.J., Lim, J., Pan, J., Kim, H.N., Park, S., Kim, K.S., Yoon, J.: Unique sandwich stacking of pyrene-adenine-pyrene for selective and ratiometric fluorescent sensing of ATP at physiological pH. J. Am. Chem. Soc. 131, 15528–15533 (2009)CrossRefGoogle Scholar
  12. 12.
    Yoon, J., Kim, S.K., Singh, N.J., Kim, K.S.: Imidazolium receptors for the recognition of anions. Chem. Soc. Rev. 35, 355–360 (2006)CrossRefGoogle Scholar
  13. 13.
    Ahmed, N., Vangaru, S., Shirinfar, B., Geronimo, I., Bist, A., Hwang, I.-C., Kim, K.S.: Fluorogenic sensing of CH3CO2 and H2PO4 by ditopic receptor through conformational change. Org. Biomol. Chem. 10, 2094–2100 (2012)CrossRefGoogle Scholar
  14. 14.
    Zhang, M., Yu, M., Li, F., Zhu, M., Li, M., Gao, Y., Li, L., Liu, Z., Zhang, J., Zhang, D., Yi, T., Huang, C.: A highly selective fluorescence turn-on sensor for cysteine/homocysteine and its application in bioimaging. J. Am. Chem. Soc. 129, 10322–10323 (2007)CrossRefGoogle Scholar
  15. 15.
    Chung, Y.M., Raman, B., Kim, D.-S., Ahn, K.H.: Fluorescence modulation in anion sensing by introducing intramolecular H-bonding interactions in host–guest adducts. Chem. Commun. 186–188 (2006)Google Scholar
  16. 16.
    Lee, K.-S., Kim, H.-J., Kim, G.-H., Shin, I., Hong, J.-I.: Fluorescent chemodosimeter for selective detection of cyanide in water. Org. Lett. 10, 49–51 (2008)CrossRefGoogle Scholar
  17. 17.
    Maeda, H., Matsuno, H., Ushida, M., Katayama, K., Saeki, K., Etoh, N.: 2,4-dinitrobenzenesulfonyl fluoresceins as fluorescent alternatives to Ellman’s reagent in thiol-quantification enzyme assays. Angew. Chem. Int. Ed. 44, 2922–2925 (2005)CrossRefGoogle Scholar
  18. 18.
    Jiang, W., Fu, Q., Fan, H., Ho, J., Wang, W.: A highly selective fluorescent probe for thiophenols. Angew. Chem. Int. Ed. 46, 8445–8448 (2007)CrossRefGoogle Scholar
  19. 19.
    Kenmoku, S., Urano, Y., Kojima, H., Nagano, T.: Development of a highly specific rhodamine-based fluorescence probe for hypochlorous acid and its application to real-time imaging of phagocytosis. J. Am. Chem. Soc. 129, 7313–7318 (2007)CrossRefGoogle Scholar
  20. 20.
    Garner, A.L., St Croix, C.M., Pitt, B.R., Leikauf, G.D., Ando, S., Koide, K.: Specific fluorogenic probes for ozone in biological and atmospheric samples. Nat. Chem. 1, 316–321 (2009)Google Scholar
  21. 21.
    Dujols, V., Ford, F., Czarnik, A.W.: A long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water. J. Am. Chem. Soc. 119, 7386–7387 (1997)CrossRefGoogle Scholar
  22. 22.
    Qi, X., Jun, E.J., Xu, L., Kim, S.J.-J., Hong, J.S.J., Yoon, Y.J., Yoon, J.: New BODIPY derivatives as OFF–ON fluorescent chemosensor and fluorescent chemodosimeter for Cu2+: cooperative selectivity enhancement toward Cu2+. J. Org. Chem. 71, 2881–2884 (2006)CrossRefGoogle Scholar
  23. 23.
    Quang, D.T., Kim, J.S.: Fluoro- and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens. Chem. Rev. 110, 6280–6301 (2010)CrossRefGoogle Scholar
  24. 24.
    Do, J.H., Kim, H.N., Yoon, Y., Kim, J.S., Kim, H.-J.: A rationally designed fluorescence turn-on probe for the gold (III) ion. Org. Lett. 12, 932–934 (2010)CrossRefGoogle Scholar
  25. 25.
    Jou, M.J., Chen, X., Swamy, K.M.K., Kim, H.N., Kim, H.-J., Lee, S.-g., Yoon, J.: Highly selective fluorescent probe for Au3+ based on cyclization of propargylamide. Chem. Commun. 46, 7218–7220 (2009)Google Scholar
  26. 26.
    Harris, H.H., Pickering, I.J., George, G.N.: The chemical form of mercury in fish. Science 301, 1203 (2003)CrossRefGoogle Scholar
  27. 27.
    Clarkson, T.W., Magos, L.: The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 36, 609–662 (2006)CrossRefGoogle Scholar
  28. 28.
    Bakir, F., Damluji, S.F., Amin-Zaki, L., Murtadha, M., Khalidi, A., Al-Rawi, N.Y., Tikriti, S., Dhahir, H.I., Clarkson, T.W., Smith, J.C., Doherty, R.A.: Methylmercury poisoning in Iraq. Science 181, 230–241 (1973)CrossRefGoogle Scholar
  29. 29.
    McClure, D.S.: Spin–orbit interaction in aromatic molecules. J. Chem. Phys. 20, 682–686 (1952)CrossRefGoogle Scholar
  30. 30.
    Chae, M.-Y., Czarnik, A.W.: Fluorimetric chemodosimetry. Hg(II) and Ag(I) indication in water via enhanced fluorescence signalling. J. Am. Chem. Soc. 114, 9704–9705 (1992)CrossRefGoogle Scholar
  31. 31.
    Hennrich, G., Sonnenschein, H., Resch-Genger, U.: Redox switchable fluorescent probe selective for either Hg(II) or Cd(II) and Zn(II). J. Am. Chem. Soc. 121, 5073–5074 (1999)CrossRefGoogle Scholar
  32. 32.
    Rurack, K., Kollmannsberger, M., Resch- Genger, U., Daub, J.: A selective and sensitive fluoroionophore for HgII, AgI, and CuII with virtually decoupled fluorophore and receptor units. J. Am. Chem. Soc. 122, 968–969 (2000)CrossRefGoogle Scholar
  33. 33.
    Prodi, L., Bargossi, C., Montalti, M., Zaccheroni, N., Su, N., Bradshaw, J.S., Izatt, R.M., Savage, P.B.: An effective fluorescent chemosensor for mercury ions. J. Am. Chem. Soc. 122, 6769–6770 (2000)CrossRefGoogle Scholar
  34. 34.
    Nolan, E.M., Lippard, S.J.: Tools and tactics for the optical detection of mercuric ion. Chem. Rev. 108, 3443–3480 (2008)CrossRefGoogle Scholar
  35. 35.
    Nolan, E.M., Lippard, S.J.: A “turn-on” fluorescent sensor for the selective detection of mercuric ion in aqueous media. J. Am. Chem. Soc. 125, 14270–14271 (2003)CrossRefGoogle Scholar
  36. 36.
    Descalzo, A., Martinez-Mañez, R., Radeglia, R., Rurack, K., Soto, J.: Coupling selectivity with sensitivity in an integrated chemosensor framework: design of a Hg2+-responsive probe, operating above 500 nm. J. Am. Chem. Soc. 125, 3418–3419 (2003)CrossRefGoogle Scholar
  37. 37.
    Guo, X., Qian, X., Jia, L.: A highly selective and sensitive fluorescent chemosensor for Hg2+ in neutral buffer aqueous solution. J. Am. Chem. Soc. 126, 2272–2273 (2004)CrossRefGoogle Scholar
  38. 38.
    Ono, A., Togashi, H.: Highly selective oligonucleotide-based sensor for mercury (II) in aqueous solutions. Angew. Chem. Int. Ed. 43, 4300–4302 (2004)Google Scholar
  39. 39.
    Hennrich, G., Walther, W., Resch-Genger, U., Sonnenschein, H.: Cu(II)- and Hg(II)-induced modulation of the fluorescence behavior of a redox-active sensor molecule. Inorg. Chem. 40, 641–644 (2001)CrossRefGoogle Scholar
  40. 40.
    Zhan, X.-Q., Qian, Z.-H., Zheng, H., Su, B.-Y., Lan, Z., Xu, J.-G.: Rhodamine thiospirolactone highly selective and sensitive reversible sensing of Hg(II). Chem. Commun. 1859–1861 (2008)Google Scholar
  41. 41.
    Soh, J.H., Swamy, K.M.K., Kim, S.K., Kim, S., Lee, S.H., Yoon, J.: Rhodamine urea derivatives as fluorescent chemosensors for Hg2+. Tetrahedron Lett. 48, 5966–5969 (2007)CrossRefGoogle Scholar
  42. 42.
    Ros-Lis, J.V., Marcos, M.D., Martinez-Manez, R., Rurack, K., Soto, J.: A regenerative chemodosimeter based on metal-induced dye formation for the highly selective and sensitive optical determination of Hg2+ ions. Angew. Chem. Int. Ed. 44, 4405–4407 (2005)Google Scholar
  43. 43.
    Yang, Y.-K., Yook, K.-J., Tae, J.: A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media. J. Am. Chem. Soc. 127, 16760–16761 (2005)CrossRefGoogle Scholar
  44. 44.
    Wu, J.S., Hwang, I.C., Kim, K.S., Kim, J.S.: Rhodamine-based Hg2+-selective chemodosimeter in aqueous solution: fluorescent OFF–ON. Org. Lett. 9, 907–910 (2007)CrossRefGoogle Scholar
  45. 45.
    Zhang, G., Zhang, D., Yin, S., Yang, X., Shuai, Z., Zhu, D.: 1,3-dithiole-2-thione derivatives featuring an anthracene unit: new selective chemodosimeters for Hg(II) ion. Chem. Commun. 2161–2163 (2005)Google Scholar
  46. 46.
    Song, F., Watanabe, S., Floreancig, P.E., Koide, K.: Oxidation-resistant fluorogenic probe for mercury based on alkyne oxymercuration. J. Am. Chem. Soc. 130, 16460–16461 (2008)CrossRefGoogle Scholar
  47. 47.
    Shi, W., Ma, H.: Rhodamine B thiolactone: a simple chemosensor for Hg2+ in aqueous media. Chem. Commun. 1856–1858 (2008)Google Scholar
  48. 48.
    Santra, M., Ryu, D., Chatterjee, A., Ko, S.-K., Shin, I., Ahn, K.H.: A chemodosimeter approach to fluorescent sensing and imaging of inorganic and methylmercury species. Chem. Commun. 2115–2117 (2009)Google Scholar
  49. 49.
    Jiang, W., Wang, W.: A selective and sensitive ‘‘turn-on’’ fluorescent chemodosimeter for Hg2+ in aqueous media via Hg2+ promoted facile desulfurization–lactonization reaction. Chem. Commun. 3913–3915 (2009)Google Scholar
  50. 50.
    Chen, X., Baek, K.H., Kim, Y., Kim, S.J., Shin, I., Yoon, J.: A selenolactone-based fluorescent chemodosimeter to monitor mercury/methyl mercury species in vitro and in vivo. Tetrahedron 66, 4016–4021 (2010)CrossRefGoogle Scholar
  51. 51.
    Kim, J.H., Kim, H.J., Kim, S.H., Lee, J.H., Do, J.H., Kim, H.J., Lee, J.H., Kim, J.S.: Fluorescent coumarinyldithiane as a selective chemodosimeter for mercury(II) ion in aqueous solution. Tetrahedron Lett. 50, 5958–5961 (2009)CrossRefGoogle Scholar
  52. 52.
    Winnick, F.M.: Photophysics of preassociated pyrenes in aqueous polymer solutions and in other organized media. Chem. Rev. 93, 587–614 (1993)CrossRefGoogle Scholar
  53. 53.
    Lakowicz, J.R.: Principles of fluorescence specroscopy. Springer, New York (2006)CrossRefGoogle Scholar
  54. 54.
    Sola, A., Oton, F., Espinosa, A., Tarraga, A., Molina, P.: Aldimines generated from aza-Wittig reaction between bis(iminophosphoranes) derived from 1,1′-diazidoferrocene and aromatic or heteroaromatic aldehydes: electrochemical and optical behaviour towards metal cations. Dalton Trans. 40, 12548–12559 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Chemistry, Center for Superfunctional MaterialsPohang University of Science and TechnologyPohangKorea
  2. 2.Department of Cellular and Molecular Medicine, College of MedicineChosun UniversityGwangjuKorea

Personalised recommendations