Interactions between cyclodextrins and fluorescent T-2 and HT-2 toxin derivatives: a physico-chemical study

  • Andrea Ventrella
  • Raffaella Verrone
  • Francesco Longobardi
  • Angela Agostiano
  • Vincenzo Lippolis
  • Michelangelo Pascale
  • Chris M. Maragos
  • Michael Appell
  • Lucia Catucci
Original Article


T-2 and HT-2 toxins are mycotoxins produced by several Fusarium species that are commonly found in various cereal grains, including oats, barley, wheat and maize. Intake estimates indicate that the presence of these mycotoxins in the diet can be of concern for public health. In this work, the inclusion processes occurring between fluorescent anthracene-derivatives of T-2 and HT-2 toxins and different cyclodextrin (CD) molecules were investigated in aqueous solutions by means of UV–Vis absorption, fluorescence emission and dynamic light scattering. Binding constant values and chemico-physical parameters were calculated. It was found that β-CDs give stronger inclusion reactions with both T-2 and HT-2 derivatives, as stated by important emission intensity increments. Such interactions were found to be fundamentally enthalpy-driven. Among β-CDs, the effect of the methylation at hydroxyl groups was tested: as a result, the di-methyl form of β-CD was found to induce the best fluorescence intensity enhancements.


T-2 toxin HT-2 toxin Cyclodextrin Fluorescence Inclusion complex 


  1. 1.
    D’Mello, J.P.F., MacDonald, A.M.C.: Mycotoxins. Anim. Feed Sci. Technol. 69, 155–166 (1997)CrossRefGoogle Scholar
  2. 2.
    Miller, J.D.: Fungi and mycotoxins in grains: implications for stored product research. J. Stor. Prod. Res. 31, 1–16 (1995)CrossRefGoogle Scholar
  3. 3.
    Yiannikouris, A., Jouany, J.P.: Mycotoxins in feed and their fate in animals: a review. Anim. Res. 51, 81–99 (2002)CrossRefGoogle Scholar
  4. 4.
    Edwards, S.G., Barrier-Guillot, B., Clasen, P.E., Hietaniemi, V., Pettersson, H.: Emerging issues of HT-2 and T-2 toxins in European cereal production. World Mycotoxin J. 2, 173–179 (2009)CrossRefGoogle Scholar
  5. 5.
    Ishigami, N., Shinozuka, J., Katayama, K., Uekama, K., Nakayama, H., Doi, K.: Apoptosis in the developing mouse embryos from T-2 toxin-inoculated dams. Histol. Histopathol. 14, 729–733 (1999)Google Scholar
  6. 6.
    Islam, Z., Nagase, M., Ota, A., Ueda, S., Yoshizawa, T., Sakato, N.: Structure-function relationship of T-2 toxin and its metabolites in inducing thymic apoptosis in vivo in mice. Biosci. Biotechnol. Biochem. 62, 1492–1497 (1998)CrossRefGoogle Scholar
  7. 7.
    Shinozuka, J., Suzuki, M., Noguchi, N., Sugimoto, T., Uetsuka, K., Nakayama, H., Doi, K.: T-2 toxin-induced apoptosis in hematopoietic tissues of mice. Toxicol. Pathol. 26, 672–681 (1998)Google Scholar
  8. 8.
    Canady, R.A., Coker, R.D., Egan., S.K., Krska, R., Olsen, M., Resnik, S., Schlatter, J.: T-2 and HT-2 toxins. In: safety evaluation of certain mycotoxins in food, WHO food additives series 47, FAO food and nutrition paper 74, pp. 557–638. Joint FAO/WHO Expert Committee on Food Additives (JECFA), WHO, Geneva (2001)Google Scholar
  9. 9.
    Koch, P.: State of the art of trichothecene analysis. Toxicol. Lett. 153, 109–112 (2004)CrossRefGoogle Scholar
  10. 10.
    Krska, R., Baumgartner, S., Josephs, R.: The state-of-the-art in the analysis of type-A and -B trichothecene mycotoxins in cereals. Fresenius J. Anal. Chem. 371, 285–299 (2001)CrossRefGoogle Scholar
  11. 11.
    Rasmussen, P.H., Ghorbani, F., Berg, T.: Deoxynivalenol and other Fusarium toxins in wheat and rye flours on the Danish market. Food Addit. Contam. 20, 396–404 (2003)CrossRefGoogle Scholar
  12. 12.
    Pascale, M., Haidukowski, M., Visconti, A.: Determination of T-2 toxin in cereal grains by liquid chromatography with fluorescence detection after immunoaffinity column clean-up and derivatization with 1-anthroylnitrile. J. Chromatogr. A 989, 257–264 (2003)CrossRefGoogle Scholar
  13. 13.
    Visconti, A., Lattanzio, V.M.T., Pascale, M., Haidukowski, M.: Analysis of T-2 and HT-2 toxins in cereal grains by immunoaffinity clean-up and liquid chromatography with fluorescence detection. J. Chromatogr. A 1075, 151–158 (2005)CrossRefGoogle Scholar
  14. 14.
    Maragos, C.M.: Measurement of T-2 and HT-2 toxins in eggs by high-performance liquid chromatography with fluorescence detection. J. Food Prot. 69, 2773–2776 (2006)Google Scholar
  15. 15.
    Lippolis, V., Pascale, M., Maragos, C.M., Visconti, A.: Improvement of detection sensitivity of T-2 and HT-2 toxins using different fluorescent labelling reagents by high-performance liquid chromatography. Talanta 74, 1476–1483 (2008)CrossRefGoogle Scholar
  16. 16.
    Maragos, C.M., Appell, M., Lippolis, V., Visconti, A., Catucci, L., Pascale, M.: Use of cyclodextrins as modifiers of fluorescence in the detection of mycotoxins. Food Addit. Contam. 25, 164–171 (2008)CrossRefGoogle Scholar
  17. 17.
    Vàzquez, M.L., Cepeda, A., Prognon, P., Mahuzier, G., Blaus, J.: Cyclodextrins as modifiers of the luminescence characteristics of aflatoxins. Anal. Chim. Acta 255, 343–350 (1991)CrossRefGoogle Scholar
  18. 18.
    Verrone, R., Catucci, L., Cosma, P., Fini, P., Agostiano, A., Lippolis, V., Pascale, M.: Effect of beta-cyclodextrin on spectroscopic properties of ochratoxin A in aqueous solution. J. Incl. Phenom. Macrocycl. Chem. 57, 475–479 (2007)CrossRefGoogle Scholar
  19. 19.
    Fini, P., Castagnolo, M., Catucci, L., Cosma, P., Agostiano, A.: The effects of increasing NaCl concentration on the stability of inclusion complexes in aqueous solution. J. Therm. Anal. Calorim. 73, 653–659 (2003)CrossRefGoogle Scholar
  20. 20.
    Li, C., Mu, J., Zhang, Y.: Study on effects of cyclodextrins on the photolysis of dissolved anthracene by fluorometry. Luminescence 20, 261–265 (2005)CrossRefGoogle Scholar
  21. 21.
    Blyshak, L.A., Warner, I.M., Patonay, G.: Evidence for non-inclusional association between α-cyclodextrin and polynuclear aromatic hydrocarbons. Anal. Chim. Acta 232, 239–243 (1990)CrossRefGoogle Scholar
  22. 22.
    Sen, P., Roy, D., Mondal, S.K., Sahu, K., Ghosh, S., Bhattacharyya, K.: Fluorescence anisotropy decay and solvation dynamics in a nanocavity: coumarin 153 in methyl β-cyclodextrins. J. Phys. Chem. A 109, 9716–9722 (2005)CrossRefGoogle Scholar
  23. 23.
    Gaitano, G.G., Brown, W.: Inclusion complexes between cyclodextrins and triblock copolymers in aqueous solution: a dynamic and static light-scattering study. J. Phys. Chem. B. 101, 710–719 (1997)CrossRefGoogle Scholar
  24. 24.
    Indirapriyadharshini, V.K., Karunanithi, P., Ramamurthy, P.: Inclusion of resorcinol-based acridinedione dyes in cyclodextrins: fluorescence enhancement. Langmuir 17, 4056–4060 (2001)CrossRefGoogle Scholar
  25. 25.
    Bonini, M., Rossi, S., Karlsson, G., Almgren, M., Lo Nostro, P., Baglioni, P.: Self-assembly of β-cyclodextrin in water. Part 1: cryo-TEM and dynamic and static light scattering. Langmuir 22, 1478–1484 (2006)CrossRefGoogle Scholar
  26. 26.
    Rossi, S., Bonini, M., Lo Nostro, P., Baglioni, P.: Self-assembly of α-cyclodextrin in water. 2. Electron spin resonance. Langmuir 23, 10959–10967 (2007)CrossRefGoogle Scholar
  27. 27.
    Loftsson, T., Màsson, M., Brewster, M.E.: Self-association of cyclodextrins and cyclodextrin complexes. J. Pharm. Sci. 93, 1091–1099 (2004)CrossRefGoogle Scholar
  28. 28.
    Bikadi, Z., Kurdi, R., Balogh, S., Szeman, J., Hazai, E.: Aggregation of cyclodextrins as an important factor to determine their complexation behavior. Chem. Biodivers. 3, 1266–1278 (2006)CrossRefGoogle Scholar
  29. 29.
    Buschmann, H.J., Dong, H., Schollmeyer, E.: Complexation of aliphatic alcohols by α-and β-cyclodextrins and their partial methylated derivatives in aqueous solution. J. Therm. Anal. Calorim. 61, 23–28 (2000)CrossRefGoogle Scholar
  30. 30.
    Saenger, W., Noltemeyer, M., Manor, P.C., Hingerty, B., Klar, B.: “Induced-f it”-type complex formation of the model enzyme α-cyclodextrin. Bioorg. Chem. 5, 187–195 (1976)CrossRefGoogle Scholar
  31. 31.
    Aree, T., Saenger, W., Leibnitz, P., Hoier, H.: Crystal structure of heptakis(2,6-di-O-methyl)-b-cyclodextrin dihydrate: a water molecule in an apolar cavity. Carbohydr. Res. 315, 199–205 (1999)CrossRefGoogle Scholar
  32. 32.
    Barbiric, D.J., de Rossi, R.H., Castro, E.A.: Inclusion complexes of 1:2 stoichiometry between azobenzenes and cyclodextrins: a molecular mechanics study. J. Mol. Struct. (Theochem) 537, 235–243 (2001)CrossRefGoogle Scholar
  33. 33.
    Rodrigues, S.G., Chaves, I.S., de Melo, N.F.S., de Jesus, M.B., Fraceto, L.F., de Fernandes, S.A., Paula, E., de Freitas, M.P., Pinto, L.M.A.: Computational analysis and physico-chemical characterization of an inclusion compound between praziquantel and methyl β-cyclodextrin for use as an alternative in the treatment of schistosomiasis. J. Incl. Phenom. Macrocycl. Chem. 70, 19–28 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Andrea Ventrella
    • 1
  • Raffaella Verrone
    • 1
  • Francesco Longobardi
    • 1
  • Angela Agostiano
    • 1
    • 2
    • 3
  • Vincenzo Lippolis
    • 4
  • Michelangelo Pascale
    • 4
  • Chris M. Maragos
    • 5
  • Michael Appell
    • 5
  • Lucia Catucci
    • 1
    • 2
  1. 1.Dipartimento di ChimicaUniversità degli Studi di Bari “Aldo Moro”BariItaly
  2. 2.IPCF-CNR, sez. BariBariItaly
  3. 3.INSTMFlorenceItaly
  4. 4.Institute of Sciences of Food Production (ISPA)CNR-National Research Council of ItalyBariItaly
  5. 5.Bacterial Foodborne Pathogens and Mycology Research UnitUSDA-ARS-NCAURPeoriaUSA

Personalised recommendations