Vibrational dynamics and hydrogen bond properties of β-CD nanosponges: an FTIR-ATR, Raman and solid-state NMR spectroscopic study

  • F. Castiglione
  • V. Crupi
  • D. Majolino
  • A. Mele
  • W. Panzeri
  • B. Rossi
  • F. Trotta
  • V. Venuti
Original Article

Abstract

Cyclodextrin nanosponges (CDNS) are cross-linked polymers with remarkable inclusion/release properties. CDNS show swelling capability and a hydrophilicity/hydrophobicity balance that can be dramatically modified by the type and quantity of cross-linking agents. Here, we focus our attention on samples of β-cyclodextrin nanosponges (β-CDNS) obtained by reacting β-cyclodextrin (β-CD) with the cross-linking agent carbonyldiimidazole at different β-CD:cross-linking agent molar ratio. The vibrational properties of CDNS thus synthesized have been investigated by Fourier transform infrared spectroscopy in attenuated total reflectance geometry and Raman spectroscopy in the dry state at room temperature. The quantitative analysis of the O–H stretching region (3,000–3,800 cm−1) allowed us to obtain structural information on the role played by primary and secondary OH groups in the hydrogen bond network of the polymer. Also, the contribution of interstitial and intracavity crystallization water molecules is reported. Solid-state NMR spectroscopy is used to study the molecular mobility of the polymer by measuring the 1H spin–lattice relaxation time in the rotating frame (T). The T values obtained for the polymer β-CDNS are compared with free β-CD. The observed relaxation parameters point out that the ester formation occurs mainly at the primary OH groups of CDs, also supporting the interpretation of vibrational spectra.

Keywords

Cyclodextrin nanosponges FTIR-ATR spectroscopy Raman spectroscopy O–H stretching Solid state NMR spectroscopy 

References

  1. 1.
    Bender, M.L., Komiyama, M.: Cyclodextrin chemistry. Springer, New York (1978)CrossRefGoogle Scholar
  2. 2.
    Trotta, F., Tumiatti, W.: Patent WO 03/085002 (2003)Google Scholar
  3. 3.
    Li, D., Ma, M.: New organic nanoporous polymers and their inclusion complexes. Chem. Mater. 11, 872–874 (1999)CrossRefGoogle Scholar
  4. 4.
    Trotta, F., Tumiatti, W., Cavalli, R., Zerbinati, O., Roggero, C. M., Vallero, R.: Ultrasound-assisted synthesis of cyclodextrin-based nanosponges. Patent number WO 06/002814 (2006)Google Scholar
  5. 5.
    Cavalli, R., Trotta, F., Tumiatti, W.: Cyclodextrin-based nanosponges for drug delivery. J. Incl. Phenom. Macrocycl. Chem. 56, 209–213 (2006)CrossRefGoogle Scholar
  6. 6.
    Trotta, F., Cavalli, R.: Characterization and applications of new hyper-cross-linked cyclodextrins. Compos. Interface 16, 39–48 (2009)CrossRefGoogle Scholar
  7. 7.
    Mele, A., Castiglione, F., Malpezzi, L., Ganazzoli, F., Raffaini, G., Trotta, F., Rossi, B., Fontana, A., Giunchi, G.: HR MAS NMR, powder XRD and Raman spectroscopy study of inclusion phenomena in βCD nanosponges. J. Incl. Phenom. Macrocycl. Chem. 69, 403–409 (2011)CrossRefGoogle Scholar
  8. 8.
    Arkas, M., Allabashi, R., Tsiourvas, D., Mattausch, E.-M., Perfler, R.: Organic/inorganic hybrid filters based on dendritic and cyclodextrin ‘‘nanosponges’’ for the removal of organic pollutants from water. Environ. Sci. Technol. 40, 2771–2777 (2006)CrossRefGoogle Scholar
  9. 9.
    Mhlanga, S.D., Mamba, B.B., Krause, R.W., Malefetse, T.J.: Removal of organic contaminants from water using nanosponge cyclodextrin polyurethanes. J. Chem. Technol. Biotechnol. 82, 382–388 (2007)CrossRefGoogle Scholar
  10. 10.
    Mamba, B.B., Krause, R.W., Malefetse, T.J., Nxumalo, E.N.: Monofunctionalized cyclodextrin polymers for the removal of organic pollutants fromwater. Environ. Chem. Lett. 5, 79–84 (2007)CrossRefGoogle Scholar
  11. 11.
    Mamba, B.B., Krause, R.W., Malefetse, T.J., Gericke, G., Sithole, S.P.: Cyclodextrin nanosponges in the removal of organic matter to produce water for power generation. Water SA 34, 657–660 (2008)Google Scholar
  12. 12.
    Swaminathan, S., Vavia, P.R., Trotta, F., Torne, S.: Formulation of beta-cyclodextrin based nanosponges of itraconazole. J. Incl. Phenom. Macrocycl. Chem. 57, 89–94 (2007)CrossRefGoogle Scholar
  13. 13.
    Vyas, A., Shailendra, S., Swarnlata, S.: Cyclodextrin based novel drug delivery systems. J. Incl. Phenom. Macrocycl. Chem. 62, 23–42 (2008)CrossRefGoogle Scholar
  14. 14.
    Ansari, K.A., Vavia, P.R., Trotta, F., Cavalli, R.: Cyclodextrin-based nanosponges for delivery of resveratrol: in vitro characterisation, stability, cytotoxicity and permeation study. AAPS Pharm. Sci. Tech. 12, 279–286 (2011)CrossRefGoogle Scholar
  15. 15.
    Pines, A., Gibby, M., Waugh, J.S.: Proton-enhanced NMR in dilute spins in solids. J. Chem. Phys. 59, 569–573 (1973)CrossRefGoogle Scholar
  16. 16.
    Mehring, M.: High-Resolution NMR Spectroscopy in Solids. Springer, New York (1983)CrossRefGoogle Scholar
  17. 17.
    Stejskal, E.O., Memory, J.D.: High-Resolution NMR in the Solid State. Fundamental of CP/MAS. Oxford University Press, Oxford (1994)Google Scholar
  18. 18.
    Maréchal, Y.: Observing the water molecule in macromolecules and aqueous media using infrared spectrometry. J. Mol. Struct. 648, 27–47 (2003)CrossRefGoogle Scholar
  19. 19.
    Bennett, A.E., Rienstra, C.M., Auger, M., Lakshmi, K.V., Griffin, R.G.: Heteronuclear decoupling in rotating solids. J. Chem. Phys. 103, 6951–6958 (1995)CrossRefGoogle Scholar
  20. 20.
    Crupi, V., Longo, F., Majolino, D., Venuti, V.: Vibrational properties of water molecules adsorbed in different zeolitic frameworks. J. Phys. Condens. Matter 18, 3563–3580 (2006)CrossRefGoogle Scholar
  21. 21.
    Crupi, V., Longo, F., Majolino, D., Venuti, V.: T dependence of vibrational dynamics of water in ion-exchanged zeolites A: a detailed Fourier transform infrared attenuated total reflection study. J. Chem. Phys. 123, 154702 (2005)CrossRefGoogle Scholar
  22. 22.
    Mallamace, F., Broccio, M., Corsaro, C., Faraone, A., Majolino, D., Venuti, V., Liu, L., Mou, C.Y., Chen, S.H.: Evidence of the existence of the low-density liquid phase in supercooled, confined water. Proc. Natl. Acad. Sci. USA 104, 424–428 (2007)CrossRefGoogle Scholar
  23. 23.
    Crupi, V., Ficarra, R., Guardo, M., Majolino, D., Stancanelli, R., Venuti, V.: UV–vis and FTIR–ATR spectroscopic techniques to study the inclusion complexes of genistein with β-cyclodextrins. J. Pharm. Biomed. Anal. 44, 110–117 (2007)CrossRefGoogle Scholar
  24. 24.
    Gavira, J.M., Hernanz, A., Bratu, I.: Dehydration of β-cyclodextrin: an IR ν(OH) band profile analysis. Vib. Spectrosc. 32, 137–146 (2003)CrossRefGoogle Scholar
  25. 25.
    Bratu, I., Veiga, F., Fernandes, C., Hernanz, A., Gavira, J.M.: Infrared spectroscopic study of triacetyl-β-cyclodextrin and its inclusion complex with nicapiridine. Spectroscopy 18, 459–467 (2004)CrossRefGoogle Scholar
  26. 26.
    Stancanelli, R., Ficarra, R., Cannavà, C., Guardo, M., Calabrò, M.L., Ficarra, P., Ottanà, R., Maccari, R., Crupi, V., Majolino, D., Venuti, V.: UV–vis and FTIR-ATR characterization of 9-fluorenon-2-carboxyester/(2-hydroxypropyl)-β-cyclodextrin inclusion complex. J. Pharm. Biomed. Anal. 47, 704–709 (2008)CrossRefGoogle Scholar
  27. 27.
    Cannavà, C., Crupi, V., Ficarra, P., Guardo, M., Majolino, D., Stancanelli, R., Venuti, V.: Physicochemical characterization of coumestrol/β-cyclodextrins inclusion complexes by UV–vis and FTIR-ATR spectroscopies. Vib. Spectrosc. 48, 172–178 (2008)CrossRefGoogle Scholar
  28. 28.
    Crini, G., Cosentino, C., Bertini, S., Naggi, A., Torri, G., Vecchi, C., Janus, L., Morcellet, M.: Solid state NMR spectroscopy study of molecular motion in cyclomaltoheptanose (β-cyclodextrin) crosslinked with epichlorohydrin. Carbohydr. Res. 308, 37–45 (1998)CrossRefGoogle Scholar
  29. 29.
    Kolodziejski, W., Klinowski, J.: Kinetics of cross-polarization in solid-state NMR: a guide for chemists. Chem. Rev. 102, 613–628 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • F. Castiglione
    • 1
  • V. Crupi
    • 2
  • D. Majolino
    • 2
  • A. Mele
    • 1
    • 3
  • W. Panzeri
    • 4
  • B. Rossi
    • 5
  • F. Trotta
    • 6
  • V. Venuti
    • 2
  1. 1.Dipartimento di ChimicaMateriali e Ing. Chimica “G. Natta”, Politecnico di MilanoMilanoItaly
  2. 2.Dipartimento di FisicaUniversità di Messina, and CNISM, UdR MessinaMessinaItaly
  3. 3.CNR-Istituto di Chimica del Riconoscimento MolecolareMilanoItaly
  4. 4.CNR-Istituto di Chimica del Riconoscimento MolecolareMilanoItaly
  5. 5.Dipartimento di FisicaUniversità di TrentoPovo, TrentoItaly
  6. 6.Dipartimento di Chimica IFM Università di TorinoTorinoItaly

Personalised recommendations