Stability constants of complexes of Zn2+, Cd2+, and Hg2+ with organic ligands: QSPR consensus modeling and design of new metal binders

  • Vitaly Solov’ev
  • Igor Sukhno
  • Vladimir Buzko
  • Aleksey Polushin
  • Gilles Marcou
  • Aslan Tsivadze
  • Alexandre Varnek
Original Article

Abstract

QSPR modeling of the stability constant log K of the complexes of Zn2+, Cd2+ and Hg2+ with various 556 (Zn2+), 347 (Cd2+) and 76 (Hg2+) organic ligands in water for the M2+ + L = (M2+)L equilibrium at 298 K and an ionic strength 0.1 M was performed. Two machine-learning methods were used: Multiple Linear Regression Analysis (MLR) and Partial Robust M-regression Algorithm (PRM). The PRM method was realized for consensus modeling using substructural molecular fragments (SMF) as descriptors. Using different types of SMF, ensembles of individual predictive MLR and PRM models were prepared to build consensus models (CM). The root mean squared error of test set predictions of fivefold cross-validations is 1.8 and 1.9 (Zn2+), 1.9 and 2.2 (Cd2+), 2.7 and 2.8 (Hg2+) for the MLR and PRM approaches correspondingly. Experimental log K values vary in the range of 0.8–21.9 (Zn2+), 0.9–23.3 (Cd2+) and 1.6–29.7 (Hg2+). Extra validation of the models has been performed on a set of ligands recently reported in the literature. The QSPR models are sampled for the design of new binders of the Zn2+, Cd2+ Hg2+ cations.

Keywords

QSPR modeling of stability constants Design of metal binders Complexes of Zn2+, Cd2+, and Hg2+ with organic ligands in water 

Notes

Acknowledgments

We thank GDR PARIS, the ARCUS project, CNRS France and the Russian Foundation for Basic Research (project no. 09-03-93106) for the support.

Supplementary material

10847_2011_9978_MOESM1_ESM.doc (794 kb)
Supporting Information Available: Tables SM1–SM3 contain the names of the organic ligands (L) and the experimental stability constant values (log K) for the equilibrium M2+ + L = (M2+)L (M = Zn, Cd, Hg) in water at 298 K and an ionic strength 0.1 M. (DOC 794 kb)

References

  1. 1.
    Ferreiros-Martınez, R., Esteban-Gomez, D., Platas-Iglesias, C., de Blas, A., Rodrıguez-Blas, T.: Zn(II), Cd(II) and Pb(II) complexation with pyridinecarboxylate containing ligands. Dalton Trans., pp. 5754–5765 (2008)Google Scholar
  2. 2.
    Dudev, T., Lim, C.: Principles governing Mg, Ca, and Zn binding and selectivity in proteins. Chem. Rev. 103(3), 773–787 (2003)CrossRefGoogle Scholar
  3. 3.
    Ambrosi, G., Formica, M., Fusi, V., Giorgi, L., Guerri, A., Lucarini, S., Micheloni, M., Paoli, P., Rossi, P., Zappia, G.: Coordination behavior toward Copper(II) and Zinc(II) ions of three ligands joining 3-Hydroxy-2-pyridinone and polyaza fragments. Inorg. Chem. 44(9), 3249–3260 (2005)CrossRefGoogle Scholar
  4. 4.
    Clares, M.P., Aguilar, J., Aucejo, R., Lodeiro, C., Albelda, M.T., Pina, F., Lima, J.C., Parola, A.J., Pina, J., Seixas De Melo, J., Soriano, C., García-España, E.: Synthesis and H+, Cu2+, and Zn2+ coordination behavior of a bis(fluorophoric) bibrachial lariat aza-crown. Inorg. Chem. 43(19), 6114–6122 (2004)CrossRefGoogle Scholar
  5. 5.
    Aragoni, M.C., Arca, M., Bencini, A., Blake, A.J., Caltagirone, C., Decortes, A., Demartin, F., Devillanova, F.A., Faggi, E., Dolci, L.S., Garau, A., Isaia, F., Lippolis, V., Prodi, L., Wilson, C., Valtancoli, B., Zaccheroni, N.: Coordination chemistry of N-aminopropyl pendant arm derivatives of mixed N/S-, and N/S/O-donor macrocycles, and construction of selective fluorimetric chemosensors for heavy metal ions. Dalton Trans., no. 18, pp. 2994–3004 (2005)Google Scholar
  6. 6.
    Blake, A.J., Bencini, A., Caltagirone, C., De Filippo, G., Dolci, L.S., Garau, A., Isaia, F., Lippolis, V., Mariani, P., Prodi, L., Montalti, M., Zaccheroni, N., Wilson, C.: A new pyridine-based 12-membered macrocycle functionalised with different fluorescent subunits; coordination chemistry towards CuII, ZnII, CdII, HgII, and PbII. Dalton Trans., no. 17, pp. 2771–2779 (2004)Google Scholar
  7. 7.
    Tamanini, E., Flavin, K., Motevalli, M., Piperno, S., Gheber, L.A., Todd, M.H., Watkinson, M.: Cyclam-Based “Clickates”: homogeneous and heterogeneous fluorescent sensors for Zn(II). Inorg. Chem. 49(8), 3789–3800 (2010)CrossRefGoogle Scholar
  8. 8.
    Varnek, A., Solov’ev, V.: Quantitative structure–property relationships in solvent extraction and complexation of metals. In: Sengupta, A.K., Moyer, B.A. (eds.) Book: Ion exchange and solvent extraction, a series of advances, vol. 19. pp. 319–358. CRC Press Taylor and Francis Group, Boca Raton (2009)Google Scholar
  9. 9.
    Varnek, A., Fourches, D., Kireeva, N., Klimchuk, O., Marcou, G., Tsivadze, A., Solov’ev, V.: Computer-aided design of new metal binders. Radiochim. Acta 96, 505–511 (2008)CrossRefGoogle Scholar
  10. 10.
    Shi, Z.G., McCullough, E.A.: A computer-simulation—statistical procedure for predicting complexation equilibrium-constants. J. Incl. Phenom. Mol. Recognit. Chem.18(1), 9–26 (1994)CrossRefGoogle Scholar
  11. 11.
    Gakh, A.A., Sumpter, B.G., Noid, D.W., Sachleben, R.A., Moyer, B.A.: Prediction of complexation properties of crown ethers using computational neural networks. J. Incl. Phenom. Mol. Recognit. Chem. 27(3), 201–213 (1997)CrossRefGoogle Scholar
  12. 12.
    Solov’ev, V.P., Varnek, A.A., Wipff, G.: Modeling of ion complexation and extraction using substructural molecular fragments. J. Chem. Inf. Comput. Sci. 40(3), 847–858 (2000)CrossRefGoogle Scholar
  13. 13.
    Varnek, A.A., Wipff, G., Solov’ev, V.P., Solotnov, A.F.: Assessment of the macrocyclic effect for the complexation of crown-ethers with alkali cations using the substructural molecular fragments method. J. Chem. Inf. Comput. Sci. 42(4), 812–829 (2002)CrossRefGoogle Scholar
  14. 14.
    Solov’ev, V.P., Varnek, A.A.: Structure-property modeling of metal binders using molecular fragments. Russ. Chem. Bull. 53(7), 1434–1445 (2004)CrossRefGoogle Scholar
  15. 15.
    Ghasemi, J., Saaidpour, S.: QSPR modeling of stability constants of diverse 15-crown-5 ethers complexes using best multiple linear regression. J. Incl. Phenom. Macrocycl. Chem. 60(3–4), 339–351 (2008)CrossRefGoogle Scholar
  16. 16.
    Qi, Y.-H., Zhang, Q.-Y., Xu, L.: Correlation analysis of the structures and stability constants of gadolinium(III) complexes. J. Chem. Inf. Comput. Sci. 42(6), 1471–1475 (2002)CrossRefGoogle Scholar
  17. 17.
    Miličević, A., Raos, N.: Prediction of stability of copper(II) and nickel(II) complexes with fructose-amino acids from the molecular graph models developed on amino acid chelates. Croat. Chem. Acta 80(3–4), 557–563 (2007)Google Scholar
  18. 18.
    Raevskii, O.A., Sapegin, A.M., Chistyakov, V.V., Solov’ev, V.P., Zefirov, N.S.: The forming of the models of the relationships structure-complexing ability. Koord. Khim. 16(9), 1175–1184 (1990)Google Scholar
  19. 19.
    Toropov, A.A., Toropova, A.P., Nesterova, A.I., Nabiev, O.M.: QSPR modeling of complex stability by correlation weighing of the topological and chemical invariants of molecular graphs. Russ. J. Coord. Chem. 30(9), 611–617 (2004)CrossRefGoogle Scholar
  20. 20.
    Cabaniss, S.E.: Quantitative structure–property relationships for predicting metal binding by organic ligands. Environ. Sci. Technol. 42(14), 5210–5216 (2008)CrossRefGoogle Scholar
  21. 21.
    Toropov, A.A., Toropova, A.P.: QSPR modeling of stability of complexes of adenosine phosphate derivatives with metals absent from the complexes of the teaching access. Russ. J. Coord. Chem. 27(8), 574–578 (2001)CrossRefGoogle Scholar
  22. 22.
    Toropov, A.A., Toropova, A.P.: QSPR modeling of complex stability by optimization of correlation weights of the hydrogen bond index and the local graph invariants. Russ. J. Coord. Chem. 28(12), 877–880 (2002)CrossRefGoogle Scholar
  23. 23.
    Svetlitski, R., Lomaka, A., Karelson, M.: QSPR modelling of lanthanide-organic complex stability constants. Sep. Sci. Technol. 41(1), 197–216 (2006)CrossRefGoogle Scholar
  24. 24.
    Solov’ev, V.P., Kireeva, N.V., Tsivadze, A.Y., Varnek, A.A.: Structure–property modelling of complex formation of strontium with organic ligands in water. J. Struct. Chem. 47(2), 298–311 (2006)CrossRefGoogle Scholar
  25. 25.
    Tetko, I.V., Solov’ev, V.P., Antonov, A.V., Yao, X.J., Fan, B.T., Hoonakker, F., Fourches, D., Lachiche, N., Varnek, A.: Benchmarking of linear and non-linear approaches for quantitative structure–property relationship studies of metal complexation with organic ligands. J. Chem. Inf. Model. 46(2), 808–819 (2006)CrossRefGoogle Scholar
  26. 26.
    Varnek, A., Fourches, D., Hoonakker, F., Solov’ev, V.P.: Substructural fragments: an universal language to encode reactions, molecular and supramolecular structures. J. Comput. Aided Mol. Design 19(9–10), 693–703 (2005)CrossRefGoogle Scholar
  27. 27.
    Swamy, M.N.S., Thulasiraman, K.: Graphs, networks, and algorithms. Wiley, New York (1981)Google Scholar
  28. 28.
    Pettit, G., Pettit, L.: IUPAC stability constants database. http://www.acadsoft.co.uk/ (2010)
  29. 29.
    Varnek, A., Fourches, D., Horvath, D., Klimchuk, O., Gaudin, C., Vayer, P., Solov’ev, V., Hoonakker, F., Tetko, I.V., Marcou, G.: ISIDA—platform for virtual screening based on fragment and pharmacophoric descriptors. Curr. Comput. Aided Drug Design 4(3), 191–198 (2008)CrossRefGoogle Scholar
  30. 30.
    Varnek, A.: ISIDA (In silico design and data analysis) program. http://infochim.u-strasbg.fr/recherche/isida/index.php (2010)
  31. 31.
    Varnek, A., Solov’ev, V.P.: “In Silico” design of potential anti-HIV actives using fragment descriptors. Comb. Chem. High Throughput Screen 8(5), 403–416 (2005)CrossRefGoogle Scholar
  32. 32.
    Arnaud-Neu, F., Delgado, R., Chaves, S.: Critical evaluation of stability constants and thermodynamic functions of metal complexes of crown ethers (IUPAC Technical Report). Pure Appl. Chem. 75(1), 71–102 (2003)CrossRefGoogle Scholar
  33. 33.
    Varnek, A., Kireeva, N., Tetko, I.V., Baskin, I.I., Solov’ev, V.P.: Exhaustive QSPR studies of a large diverse set of ionic liquids: how accurately can we predict melting points? J. Chem. Inf. Model. 47(3), 1111–1122 (2007)CrossRefGoogle Scholar
  34. 34.
    Muller, P.H., Neumann, P., Storm, R.: Tafeln der mathematischen Statistik. VEB Fachbuchverlag, Leipzip (1979)Google Scholar
  35. 35.
    Golub, G.H., Reinsch, C.: Singular value decomposition and least squares solutions. Numer. Math. 14, 403–420 (1970)CrossRefGoogle Scholar
  36. 36.
    Horvath, D., Bonachera, F., Solov’ev, V., Gaudin, C., Varnek, A.: Stochastic versus stepwise strategies for quantitative structure-activity relationship generation—how much effort may the mining for successful QSAR models take? J. Chem. Inf. Model. 47(3), 927–939 (2007)CrossRefGoogle Scholar
  37. 37.
    Serneels, S., Croux, C., Filzmoser, P., Van Espen, P.J.: Partial robust M-regression. Chemom. Intell. Lab. Syst. 79, 55–64 (2005)CrossRefGoogle Scholar
  38. 38.
    Caltagirone, C., Bencini, A., Demartin, F., Devillanova, F.A., Garau, A., Isaia, F., Lippolis, V., Mariani, P., Papke, U., Tei, L., Verani, G.: Redox chemosensors: coordination chemistry towards CuII, ZnII, CdII, HgII, and PbII of 1-aza-4,10-dithia-7-oxacyclododecane ([12]aneNS2O) and its N-ferrocenylmethyl derivative. Dalton Trans., issue no. 5, pp. 901–909 (2003)Google Scholar
  39. 39.
    Bazzicalupi, C., Bencini, A., Berni, E., Bianchi, A., Borsari, L., Giorgi, C., Valtancoli, B., Lodeiro, C., Lima, J.C., Parola, A.J., Pina, F.: Protonation and coordination properties towards Zn(II), Cd(II) and Hg(II) of a phenanthroline-containing macrocycle with an ethylamino pendant arm. Dalton Trans., issue no. 4, pp. 591–597 (2004)Google Scholar
  40. 40.
    Kálmán, F.K., Baranyai, Z., Tóth, I., Bányai, I., Király, R., Brücher, E., Aime, S., Sun, X., Sherry, A.D., Kovács, Z.: Synthesis, potentiometric, kinetic, and NMR studies of 1, 4, 7, 10-Tetraazacyclododecane-1, 7-bis(acetic acid)-4, 10-bis(methylenephosphonic acid) (DO2A2P) and its complexes with Ca(II), Cu(II), Zn(II) and Lanthanide(III) ions. Inorg. Chem. 47(9), 3851–3862 (2008)CrossRefGoogle Scholar
  41. 41.
    Baranyai, Z., Bombieri, G., Meneghetti, F., Tei, L., Botta, M.: A solution thermodynamic study of the Cu(II) and Zn(II) complexes of EBTA: X-ray crystal structure of the dimeric complex [Cu2(EBTA)(H2O)3]2. Inorg. Chim. Acta 362, 2259–2264 (2009)CrossRefGoogle Scholar
  42. 42.
    Rodriguez, L., Lima, J.C., Parola, A.J., Pina, F., Meitz, R., Aucejo, R., Garcia-Espana, E., Llinares, J.M., Soriano, C., Alarcon, J.: Anion detection by fluorescent Zn(II) complexes of functionalized polyamine ligands. Inorg. Chem. 47(14), 6173–6183 (2008)CrossRefGoogle Scholar
  43. 43.
    Varnek, A., Fourches, D., Solov’ev, V.P., Baulin, V.E., Turanov, A.N., Karandashev, V.K., Fara, D., Katritzky, A.R.: “In Silico” design of new uranyl extractants based on phosphoryl-containing podands: QSPR studies, generation and screening of virtual combinatorial library, and experimental tests. J. Chem. Inf. Comput. Sci. 44(4), 1365–1382 (2004)CrossRefGoogle Scholar
  44. 44.
    Katritzky, A.R., Fara, D.C., Yang, H., Karelson, M., Suzuki, T., Solov’ev, V.P., Varnek, A.: Quantitative structure–property relationship modeling of beta-cyclodextrin complexation free energies. J. Chem. Inf. Comput. Sci. 44(2), 529–541 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Vitaly Solov’ev
    • 1
  • Igor Sukhno
    • 2
  • Vladimir Buzko
    • 2
  • Aleksey Polushin
    • 2
  • Gilles Marcou
    • 3
  • Aslan Tsivadze
    • 1
  • Alexandre Varnek
    • 3
  1. 1.Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussian Federation
  2. 2.Kuban State UniversityKrasnodarRussian Federation
  3. 3.Laboratoire d’Infochimie, UMR 7177 CNRSUniversité de StrasbourgStrasbourgFrance

Personalised recommendations