Inherently chiral calixarenes: a decade’s review

  • Yan-Song Zheng
  • Jun LuoEmail author
Review Article


Inherently chiral calixarenes are receiving increasing attention due to their intriguing structures and potential applications in chemical, analytical, biological and material fields. This review mainly covers the advances in syntheses, structures, and applications of inherently chiral calixarenes which emerged later than 2000. Outlook on the development orientation of inherently chiral calixarenes is tentatively provided.


Calixarene Inherently chiral Optical resolution Stereoselective synthesis  Organocatalyst Enantioselective recognition 



The authors are grateful to National Natural Science Foundation of China (No. 20902029, 20872040) and National Innovative Training and Research Program for Undergraduates (2009097) for financial support. Min Zhang (undergraduate) is appreciated for her assistance.


  1. 1.
    Sirit, A., Yilmaz, M.: Chiral calixarenes. Turk. J. Chem. 33, 159–200 (2009)Google Scholar
  2. 2.
    Gopalsamuthiram, V., Predeus, A.V., Huang, R.H., Wulff, W.D.: Optically active calixarenes conduced by methylene substitution. J. Am. Chem. Soc. 131, 18018–18019 (2009)CrossRefGoogle Scholar
  3. 3.
    Gopalsamuthiram, V., Huang, R., Wulff, W.D.: The synthesis of optically active calix[4]arenes with one or three substituents on the methylene bridges. Chem. Commun. 46, 8213–8215 (2010)CrossRefGoogle Scholar
  4. 4.
    Böhmer, V., Kraft, D., Tabatabai, M.: Inherently chiral calixarenes. J. Incl. Phenom. Mol. Recognit. Chem. 19, 17–39 (1994)CrossRefGoogle Scholar
  5. 5.
    Cort, A.D., Mandolini, L., Pasquini, C., Schiaffino, L.: “Inherent chirality” and curvature. New J. Chem. 28, 1198–1199 (2004)CrossRefGoogle Scholar
  6. 6.
    Szumna, A.: Inherently chiral concave molecules—from synthesis to applications. Chem. Soc. Rev. 39, 4274–4285 (2010)CrossRefGoogle Scholar
  7. 7.
    Seeber, G., Tiedemann, B.E.F., Raymond, K.N.: Supramolecular chirality in coordination chemistry. Top. Curr. Chem. 265, 147–183 (2006)CrossRefGoogle Scholar
  8. 8.
    Rebek Jr, J.: Host–guest chemistry of calixarene capsules. Chem. Commun. 36, 637–643 (2000)CrossRefGoogle Scholar
  9. 9.
    Mateos-Timoneda, M.A.: Supramolecular chirality of self-assembled systems in solution. Chem. Soc. Rev. 33, 363–372 (2004)CrossRefGoogle Scholar
  10. 10.
    Vázquez-Campos, S., Crego-Calama, M., Reinhoudt, D.N.: Supramolecular chirality of hydrogen-bonded rosette assemblies. Supramol. Chem. 19, 95–106 (2007)CrossRefGoogle Scholar
  11. 11.
    Rudzevich, Y., Rudzevich, V., Böhmer, V.: Selective dimerisation of tetraurea calix[4]arenes. Supramol. Chem. 22, 717–725 (2010)CrossRefGoogle Scholar
  12. 12.
    Le Poul, N., Douziech, B., Zeitouny, J., Thiabaud, G., Colas, H., Conan, F., Cosquer, N., Jabin, I., Lagrost, C., Hapiot, P., Reinaud, O., Le Mest, Y.: Mimicking the protein access channel to a metal center: effect of a funnel complex on dissociative versus associative copper redox chemistry. J. Am. Chem. Soc. 131, 17800–17807 (2009)CrossRefGoogle Scholar
  13. 13.
    Kubo, Y., Maeda, S., Tokita, S., Kubo, M.: Colorimetric chiral recognition by a molecular sensor. Nature 382, 522–524 (1996)CrossRefGoogle Scholar
  14. 14.
    Liu, S., Sandoval, C.A.: Evaluation of calix[4]arene-based chiral diphosphite ligands in Rh-catalyzed asymmetric hydrogenation of simple dehydroamino acid derivatives. J. Mol. Catal. A Chem. 325, 65–72 (2010)CrossRefGoogle Scholar
  15. 15.
    Krawinkler, K.H., Maier, N.M., Ungaro, R., Sansone, F., Casnati, A., Lindner, W.: Novel cinchona carbamate selectors with complementary enantioseparation characteristics for N-acylated amino acids. Chirality 15, S17–S29 (2003)CrossRefGoogle Scholar
  16. 16.
    Zheng, Y.S., Zhang, C.: Exceptional chiral recognition of racemic carboxylic acids by calix[4]arenes bearing optically pure α, β-amino alcohol groups. Org. Lett. 6, 1189–1192 (2004)CrossRefGoogle Scholar
  17. 17.
    Salem, A.B., Regnouf-de-Vains, J.-B.: Synthesis and characterisation of a new pod and based on a calixarene and a β-lactam. Tetrahedron Lett. 42, 7033–7036 (2001)CrossRefGoogle Scholar
  18. 18.
    Ludwig, R.: Calixarenes for biochemical recognition and separation. Microchim. Acta 152, 1–19 (2005)CrossRefGoogle Scholar
  19. 19.
    Sansone, F., Baldini, L., Casnati, A., Ungaro, R.: Calixarenes: from biomimetic receptors to multivalent ligands for biomolecular recognition. New J. Chem. 34, 2715–2728 (2010)CrossRefGoogle Scholar
  20. 20.
    Otsuka, H., Shinkai, S.: Stereochemical control of calixarenes useful as rigid and conformationally diversiform platforms for molecular design. Supramol. Sci. 3, 189–205 (1996)CrossRefGoogle Scholar
  21. 21.
    Vysotsky, M., Schmidt, C., Böhmer, V.: Chirality in calixarenes and calixarene assemblies. In: Gokel, G.W. (ed.) Advances in Supramolecular Chemistry, vol. 7, pp. 139–233. JAI Press, Stanford (2000)Google Scholar
  22. 22.
    Cherenok, S., Dutasta, J.-P., Kalchenko, V.: Phosphorus-containing chiral macrocycles. Curr. Org. Chem. 10, 2307–2331 (2006)CrossRefGoogle Scholar
  23. 23.
    McIldowie, M.J., Mocerino, M., Ogden, M.I.: A brief review of Cn-symmetric calixarenes and resorcinarenes. Supramol. Chem. 22, 13–39 (2010)CrossRefGoogle Scholar
  24. 24.
    No, K.H., Gutsche, C.D.: Calixarenes. 8. Short, stepwise synthesis of p-phenylcalix[4]arene, p-phenyl-p-tert-butylcalix[4]arene, and derived products. J. Org. Chem. 47, 2713–2719 (1982)CrossRefGoogle Scholar
  25. 25.
    Tairov, M.A., Vysotsky, M.O., Kalchenko, O.I., Pirozhenko, V.V., Kalchenko, V.I.: Symmetrical and inherently chiral water-soluble calix[4]arenes bearing dihydroxyphosphoryl groups. J. Chem. Soc., Perkin Trans. 1 31, 1405–1411 (2002)CrossRefGoogle Scholar
  26. 26.
    Cao, Y.-D., Luo, J., Zheng, Q.-Y., Chen, C.-F., Wang, M.-X., Huang, Z.-T.: Preparation of both antipodes of enantiopure inherently chiral calix[4]crowns. J. Org. Chem. 69, 206–208 (2004)CrossRefGoogle Scholar
  27. 27.
    Luo, J., Zheng, Q.-Y., Chen, C.-F., Huang, Z.-T.: Synthesis and optical resolution of a series of inherently chiral calix[4]crowns with cone and partial cone conformations. Chem. Eur. J. 11, 5917–5928 (2005)CrossRefGoogle Scholar
  28. 28.
    Luo, J., Zheng, Q.-Y., Chen, C.-F., Huang, Z.-T.: Facile synthesis and optical resolution of inherently chiral fluorescent calix[4]crowns: enantioselective recognition towards chiral leucinol. Tetrahedron 61, 8517–8528 (2005)CrossRefGoogle Scholar
  29. 29.
    Li, S.-Y., Zheng, Q.-Y., Chen, C.-F., Huang, Z.-T.: Preparation of enantiopure inherently chiral calix[5]arenes. Tetrahedron Asymmetry 16, 641–645 (2005)CrossRefGoogle Scholar
  30. 30.
    Arnecke, R., Böhmer, V., Ferguson, G., Pappalardo, S.: Inherently chiral derivatives of calix[5]crowns. Tetrahedron Lett. 37, 1497–1500 (1996)CrossRefGoogle Scholar
  31. 31.
    Gonzalez, J.J., Nieto, P.M., Prados, P., Echavarren, A.M., de Mendoza, J.: Calix[4]arene sulfonates: palladium-catalyzed intermolecular migration of sulfonyl groups and isolation of a calix[4]arene in a chiral 1,2-alternate conformation. J. Org. Chem. 60, 7419–7423 (1995)CrossRefGoogle Scholar
  32. 32.
    Narumi, F., Yamabuki, W., Hattori, T., Kameyama, H., Miyano, S.: Synthesis and optical resolution of an anti-O,O′-dialkylated calix[4]arene. Chem. Lett. 32, 320–321 (2003)CrossRefGoogle Scholar
  33. 33.
    Narumi, F., Hattori, T., Yamabuki, W., Kabuto, C., Kameyama, H.: Resolution of inherently chiral anti-O,O′-dialkylated calix[4]arenes and determination of their absolute stereochemistries by CD and X-ray methods. Tetrahedron Asymmetry 16, 793–800 (2005)CrossRefGoogle Scholar
  34. 34.
    Kleij, A.W., Souto, B., Pastor, C.J., Prados, P., de Mendoza, J.: Unexpected single-step formation of 1,2-anti-heterodisubstituted calix[4]arenes upon alkylation of a tribenzoyl precursor. J. Org. Chem. 68, 8711–8714 (2003)CrossRefGoogle Scholar
  35. 35.
    Shirakawa, S., Moriyama, A., Shimizu, S.: Design of a novel inherently chiral calix[4]arene for chiral molecular recognition. Org. Lett. 9, 3117–3119 (2007)CrossRefGoogle Scholar
  36. 36.
    Shirakawa, S., Moriyama, A., Shimizu, S.: Synthesis, optical resolution and enantiomeric recognition ability of novel, inherently chiral calix[4]arenes: trial application to asymmetric reactions as organocatalysts. Eur. J. Org. Chem. 2008, 5957–5964 (2008)CrossRefGoogle Scholar
  37. 37.
    Shirakawa, S., Kimura, T., Murata, S.-i., Shimizu, S.: Synthesis and resolution of a multifunctional inherently chiral calix[4]arene with an ABCD substitution pattern at the wide rim: the effect of a multifunctional structure in the organocatalyst on enantioselectivity in asymmetric reactions. J. Org. Chem. 74, 1288–1296 (2009)CrossRefGoogle Scholar
  38. 38.
    Shirakawa, S., Shimizu, S.: Synthesis of an inherently chiral calix[4]arene amino acid and its derivatives: their application to asymmetric reactions as organocatalysts. Eur. J. Org. Chem. 2009, 1916–1924 (2009)CrossRefGoogle Scholar
  39. 39.
    Shirakawa, S., Shimizu, S.: Improved design of inherently chiral calix[4]arenes as organocatalysts. New J. Chem. 34, 1217–1222 (2010)CrossRefGoogle Scholar
  40. 40.
    Colasson, B., Reinaud, O.: Selective hetero-trisfunctionalization of the large rim of a biomimetic calix[6]arene using host–guest chemistry as a synthetic tool. J. Am. Chem. Soc. 130, 15226–15227 (2008)CrossRefGoogle Scholar
  41. 41.
    Luo, J., Shen, L.-C., Chung, W.-S.: Inherently chiral biscalix[4]arenes: design and syntheses. J. Org. Chem. 75, 464–467 (2010)CrossRefGoogle Scholar
  42. 42.
    Miao, R., Zheng, Q.-Y., Chen, C.-F., Huang, Z.-T.: Efficient syntheses and resolutions of inherently chiral calix[4]quinolines in the cone and partial-cone conformation. J. Org. Chem. 70, 7662–7671 (2005)CrossRefGoogle Scholar
  43. 43.
    Miao, R., Xu, Z.-X., Huang, Z.-T., Chen, C.-F.: Enantiopure inherently chiral calix[4]arene derivatives containing quinolin-2-yl-methanol moiety: synthesis and application in the catalytic asymmetric addition of diethylzinc to benzaldehyde. Sci. China B. Chem. 52, 505–512 (2009)CrossRefGoogle Scholar
  44. 44.
    Mastalerz, M., Hüggenberg, W., Dyker, G.: Photochemistry of styrylcalix[4]arenes. Eur. J. Org. Chem. 2006, 3977–3987 (2006)CrossRefGoogle Scholar
  45. 45.
    Verboom, W., Bodewes, P.J., van Essen, G., Timmerman, P., van Hummel, G.J., Harkema, S., Reinhoudt, D.N.: A novel approach to inherently chiral calix[4]arenes by direct introduction of a substituent at the meta position. Tetrahedron 51, 499–512 (1995)CrossRefGoogle Scholar
  46. 46.
    Amato, M.E., Ballistreri, F.P., Pappalardo, A., Tomaselli, G.A., Toscano, R.M., Williams, D.J.: Novel chiral (salen)MnIII complexes containing a calix[4]arene unit as catalysts for enantioselective epoxidation reactions of (Z)-aryl alkenes. Eur. J. Org. Chem. 2005, 3562–3570 (2005)CrossRefGoogle Scholar
  47. 47.
    Consoli, G.M.L., Cunsolo, F., Geraci, C., Neri, P.: Synthesis of p-tert-butyl-5,5′-bicalix[4]arene and access to 5,5′-bicalix[4]arenes functionalized at the upper rim. Lett. Org. Chem. 2, 252–257 (2005)CrossRefGoogle Scholar
  48. 48.
    Troisi, F., Pierro, T., Gaeta, C., Carratù, M., Neri, P.: Appending aromatic moieties at the para- and meta-position of calixarene phenol rings via p-bromodienone route. Tetrahedron Lett. 50, 4416–4419 (2009)CrossRefGoogle Scholar
  49. 49.
    Pavlov, V.A.: C 2 and C 1 symmetry of chiral auxiliaries in catalytic reactions on metal complexes. Tetrahedron 64, 1147–1179 (2008)CrossRefGoogle Scholar
  50. 50.
    Ikeda, A., Yoshimura, M., Lhoták, P., Shinkai, S.: Synthesis and optical resolution of naphthalene-containing inherently chiral calix[4]arenes derived by intramolecular ring closure or stapling of proximal phenyl units. J. Chem. Soc. Perkin Trans. 1 25, 1945–1950 (1996)CrossRefGoogle Scholar
  51. 51.
    Ikeda, A., Shinkai, S.: ‘Stapled’ calix[n]arenes: immobilization of the calix[4]arene conformation by cross-linking on the upper rim. J. Chem. Soc. Perkin Trans 1 22, 2671–2673 (1993)CrossRefGoogle Scholar
  52. 52.
    Bitter, I., Grün, A., Tóth, G., Balázs, B., Horváth, G., Tőke, L.: Studies on calix(aza)crowns, II. Synthesis of novel proximal doubly bridged calix[4]arenes by intramolecular ring closure of syn 1,3- and 1,2-ω-chloroalkylamides. Tetrahedron 54, 3857–3870 (1998)CrossRefGoogle Scholar
  53. 53.
    Sharma, S.K., Gutsche, C.D.: Synthesis and reactions of calix[4]arene bisanhydrides. J. Org. Chem. 64, 3507–3512 (1999)CrossRefGoogle Scholar
  54. 54.
    Kleij, A.W., Prados, P., de Mendoza, J.: A fast access to non-symmetrically substituted 1,3-alternate conformers of calix[4]arenes. Eur. J. Org. Chem. 2004, 2848–2852 (2004)CrossRefGoogle Scholar
  55. 55.
    Shimizu, S., Moriyama, A., Kito, K., Sasaki, Y.: Selective synthesis and isolation of all possible conformational isomers of proximally para-disubstituted calix[4]arene. J. Org. Chem. 68, 2187–2194 (2003)CrossRefGoogle Scholar
  56. 56.
    Blanda, M.T., Edwards, L., Salazar, R., Boswell, M.: Synthesis and characterization of an inherently chiral calix[6]arene in the 1,4-alternate conformation. Tetrahedron Lett. 47, 7081–7084 (2006)CrossRefGoogle Scholar
  57. 57.
    Wolff, A., Böhmer, V., Vogt, W., Ugozzoli, F., Andreetti, G.D.: Dissymmetric calix[4]arenes with C 2 and C 4 symmetry. J. Org. Chem. 55, 5665–5667 (1990)CrossRefGoogle Scholar
  58. 58.
    Chowdhury, S., Georghiou, P.E.: Synthesis and properties of a new member of the calix naphthalene family: a C 2-symmetrical endo-calix[4]naphthalene. J. Org. Chem. 67, 6808–6811 (2002)CrossRefGoogle Scholar
  59. 59.
    Barton, O.G., Neumann, B., Stammler, H.-G., Mattay, J.: Intramolecular direct arylation in an A, C-functionalized calix[4]arene. Org. Biomol. Chem. 6, 104–111 (2008)CrossRefGoogle Scholar
  60. 60.
    Dieleman, C., Steyer, S., Jeunesse, C., Matt, D.: Diphosphines based on an inherently chiral calix[4]arene scaffold: synthesis and use in enantioselective catalysis. J. Chem. Soc. Dalton Trans. 30, 2508–2517 (2001)CrossRefGoogle Scholar
  61. 61.
    Yakovenko, A.V., Boyko, V.I., Danylyuk, O., Suwinska, K., Lipkowski, J., Kalchenko, V.I.: Diastereoselective lower rim (1S)-camphor sulfonylation as the shortest way to the inherently chiral calix[4]arene. Org. Lett. 9, 1183–1185 (2007)CrossRefGoogle Scholar
  62. 62.
    Boyko, V.I., Yakovenko, A.V., Matvieiev, Y.I., Kalchenko, O.I., Shishkin, O.V., Shishkina, S.V., Kalchenko, V.I.: Regio- and stereoselective 1(S)-camphor sulfonylation of monoalkoxycalix[4]arenes. Tetrahedron 64, 7567–7573 (2008)CrossRefGoogle Scholar
  63. 63.
    Boyko, V.I., Matvieiev, Y.I., Klyachina, M.A., Yesypenko, O.A., Shishkina, S.V., Shishkin, O.V., Kalchenko, V.I.: Proximal heteroalkylation of monoalkoxycalix[4]arenes in synthesis of inherently chiral molecules. Tetrahedron 65, 4220–4227 (2009)CrossRefGoogle Scholar
  64. 64.
    Boyko, V.I., Shivanyuk, A., Pyrozhenko, V.V., Zubatyuk, R.I., Shishkin, O.V., Kalchenko, V.I.: A stereoselective synthesis of asymmetrically substituted calix[4]arene carbamates. Tetrahedron Lett. 47, 7775–7778 (2006)CrossRefGoogle Scholar
  65. 65.
    Kliachyna, M.A., Yesypenko, O.A., Pirozhenko, V.V., Shishkina, S.V., Shishkin, O.V., Boyko, V.I., Kalchenko, V.I.: Synthesis, optical resolution and absolute configuration of inherently chiral calixarene carboxylic acids. Tetrahedron 65, 7085–7091 (2009)CrossRefGoogle Scholar
  66. 66.
    Xu, Z.-X., Zhang, C., Zheng, Q.-Y., Chen, C.-F., Huang, Z.-T.: A new approach to enantiopure inherently chiral calix[4]arenes: determination of their absolute configurations. Org. Lett. 9, 4447–4450 (2007)CrossRefGoogle Scholar
  67. 67.
    Xu, Z.-X., Zhang, C., Yang, Y., Chen, C.-F., Huang, Z.-T.: Effective nonenzymatic kinetic resolution of racemic m-nitro-substituted inherently chiral aminocalix[4]arenes. Org. Lett. 10, 477–479 (2008)CrossRefGoogle Scholar
  68. 68.
    Xu, Z.X., Zhang, C., Huang, Z.T., Chen, C.F.: Efficient synthesis and resolution of meta-substituted inherently chiral aminocalix[4]arene derivatives. Chin. Sci. Bull. 55, 2859–2869 (2010)CrossRefGoogle Scholar
  69. 69.
    Xu, Z.-X., Li, G.-K., Chen, C.-F., Huang, Z.-T.: Inherently chiral calix[4]arene-based bifunctional organocatalysts for enantioselective aldol reactions. Tetrahedron 64, 8668–8675 (2008)CrossRefGoogle Scholar
  70. 70.
    Xu, Z.-X., Huang, Z.-T., Chen, C.-F.: Synthesis and structures of novel enantiopure inherently chiral calix[4]arene-derived salphen ligands and their transition-metal complexes. Tetrahedron Lett. 50, 5430–5433 (2009)CrossRefGoogle Scholar
  71. 71.
    Herbert, S.A., Arnott, G.E.: An asymmetric ortholithiation approach to inherently chiral calix[4]arenes. Org. Lett. 21, 4986–4989 (2009)CrossRefGoogle Scholar
  72. 72.
    Herbert, S.A., Arnott, G.E.: Synthesis of inherently chiral calix[4]arenes: stereocontrol through ligand choice. Org. Lett. 12, 4600–4603 (2010)CrossRefGoogle Scholar
  73. 73.
    Itzhak, N., Biali, S.E.: Selective functionalization of a single methylene bridge of a calix[6]arene. J. Org. Chem. 75, 3437–3442 (2010)CrossRefGoogle Scholar
  74. 74.
    Kogan, K., Biali, S.E.: Incorporation of substituents at the methylene linkages of the calix[5]arene skeleton. J. Org. Chem. 74, 7172–7175 (2009)CrossRefGoogle Scholar
  75. 75.
    Kogan, K., Columbus, I., Biali, S.E.: Functionalization of the methylene bridges of the calix[6]arene scaffold. J. Org. Chem. 73, 7327–7335 (2008)CrossRefGoogle Scholar
  76. 76.
    Columbus, I., Biali, S.E.: Calix[4]arene derivatives monosubstituted at all four methylene bridges. J. Org. Chem. 73, 2598–2606 (2008)CrossRefGoogle Scholar
  77. 77.
    Harvey, P.D.: Wide-rim and outer-face functionalizations of calix[4]arene. Coord. Chem. Rev. 233–234, 289–309 (2002)CrossRefGoogle Scholar
  78. 78.
    Iki, H., Kikuchi, T., Shinkai, S.: Syntheses and spectral characterizations of tricarbonylchromium complexes of calix[4]arenes. J. Chem. Soc. Perkin Trans. 1 22, 205–210 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Tongji School of PharmacyHuazhong University of Science and TechnologyWuhanChina
  2. 2.Department of ChemistryHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations