Study of binary systems of β-cyclodextrin with a highly potential anti-mycobacterial drug

  • V. Boldescu
  • I. Bratu
  • Gh. Borodi
  • I. Kacso
  • A. Bende
  • Gh. Duca
  • F. Macaev
  • S. Pogrebnoi
  • Z. Ribkovskaia
Original Article

Abstract

The present research paper is dedicated to the obtaining and physicochemical characterization of a highly potential anti-mycobacterial drug candidate with β-cyclodextrin (βCD). The active substance is a 1,3,4-oxadiazole derivative, 2-phenyl-5-{[(2-phenyl-1,3-dioxolan-2-yl)methyl]sulfanyl}-1,3,4-oxadiazole, further named DIOX. DIOX–βCD binary systems were obtained as a physical mixture and a lyophilized product with molar ratio between the main components equal to 1:1 and 1:2. The obtained systems were submitted to physicochemical characterization applying the following instrumental methods: infrared spectrometry, differential scanning calorimetry, and X-ray crystallographic analysis. Besides, a molecular modeling analysis has been performed. The research data suggested certain intermolecular interaction between DIOX and βCD, suggesting formation of a three-molecular inclusion complex DIOX:βCD, including one DIOX molecule and two molecules of βCD. The main parts of the DIOX molecule included in the hydrophobic cavity of the cyclodextrin molecules most probably are dioxolane cycle and two benzene rings.

Keywords

β-Cyclodextrin Anti-mycobacterial drugs 1,3,4-Oxadiazole derivatives Drug–cyclodextrin complex Tuberculosis 

References

  1. 1.
    WHO: Anti-tuberculosis drug resistance in the world. http://www.who.int/tb/publications/2008/drs_report4_26feb08.pdf (2008). Accessed 26 March 2011
  2. 2.
    WHO: Global tuberculosis control report 2010. http://whqlibdoc.who.int/publications/2010/9789241564069_eng.pdf (2010). Accessed 26 March 2011
  3. 3.
    Kamal, A., Azeeza, S., Malik, M.S., et al.: Efforts towards the development of new antitubercular agents: potential for thiolactomycin based compounds. J. Pharm. Pharm. Sci. 11(2), 56–80 (2008)Google Scholar
  4. 4.
    Makarov, V., Manina, J., Mikusova, K., et al.: Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science 5928, 801–804 (2009)CrossRefGoogle Scholar
  5. 5.
    Sharma, M., Chaturvedi, V., Manju, Y.K., et al.: Substituted quinolinyl chalcones and quinolinyl pyrimidines as a new class of anti-infective agents. Eur. J. Med. Chem. 44(5), 2081–2091 (2009)CrossRefGoogle Scholar
  6. 6.
    De, P., Yoya, G.K., Bedos-Belval, F., Constant, P., et al.: Design, synthesis and biological evaluation of new cinnamic derivatives as antituberculosis agents. J. Med. Chem. 54(5), 1449–1461 (2011)CrossRefGoogle Scholar
  7. 7.
    Macaev, F., Rusu, Gh., Pogrebnoi, S., et al.: Synthesis of novel 5-aryl-2-thio-1,3,4-oxadiazoles and the study of their structure-anti-mycobacterial activities. Bioorg. Med. Chem. 13(16), 4842–4850 (2005)CrossRefGoogle Scholar
  8. 8.
    Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J.: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug. Deliv. Rev. 46(1–3), 3–26 (2001)CrossRefGoogle Scholar
  9. 9.
    Donova, M.N., Nikolayeva, V.M., Dovbnya, D.V., et al.: Methyl-β-cyclodextrin alters growth, activity and cell envelope features of sterol-transforming Mycobacteria. Microbiology 153, 1981–1992 (2007)CrossRefGoogle Scholar
  10. 10.
    Elstner, M., Porezag, D., Jungnickel, G., Elsner, J., Haugk, M., Frauenheim, T., Suhai, S., Seifert, G.: Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 58, 7260–7268 (1998)CrossRefGoogle Scholar
  11. 11.
    Elstner, M., Jalkanen, K.J., Knapp-Mohammady, M., Frauenheim, T., Suhai, S.J.: Secondary-structure elements for glycine and alanine based polypeptides: β-sheets, helices, and turn. Chem. Phys. 256, 15–27 (2000)CrossRefGoogle Scholar
  12. 12.
    Elstner, M., Jalkanen, K.J., Knapp-Mohammady, M., Frauenheim, T., Suhai, S.J.: Energetics and structure of glycine and alanine based model peptides: approximated SCC-DFTB, AM1, and PM3 methods in comparison with DFT, HF, and MP2 calculations. Chem. Phys. 263, 203–219 (2001)CrossRefGoogle Scholar
  13. 13.
    Elstner, M., Hobza, P., Frauenheim, T., Suhai, S., Kaxiras, E.J.: Hydrogen bonding and stacking interactions of nucleic acid base pairs: a density-functional-theory based treatment. Chem. Phys. 114, 5149–5155 (2001)Google Scholar
  14. 14.
    Bende, A., Grosu, I., Turcu, I.: Molecular modeling of phenothiazine derivatives: self-assembling properties. J. Phys. Chem. A 114(47), 12479–12489 (2010)CrossRefGoogle Scholar
  15. 15.
    Niehaus, T.A., Elstner, M., Frauenheim, Th., Suhai, S.: Application of an approximate density-functional method to sulphur containing compounds. J. Mol. Struct. (THEOCHEM) 541, 185 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • V. Boldescu
    • 1
  • I. Bratu
    • 2
  • Gh. Borodi
    • 2
  • I. Kacso
    • 2
  • A. Bende
    • 2
  • Gh. Duca
    • 3
  • F. Macaev
    • 4
  • S. Pogrebnoi
    • 4
  • Z. Ribkovskaia
    • 4
  1. 1.Department of Industrial and Ecological ChemistryState University of MoldovaChişinăuRepublic of Moldova
  2. 2.National Institute for Research and Development of Isotopic and Molecular TechnologiesCluj-NapocaRomania
  3. 3.Academy of Sciences of MoldovaChişinăuRepublic of Moldova
  4. 4.Institute of ChemistryAcademy of Sciences of MoldovaChişinăuRepublic of Moldova

Personalised recommendations