Synthesis of novel pillar-shaped cavitands “Pillar[5]arenes” and their application for supramolecular materials

  • Tomoki OgoshiEmail author
Review Paper


In 2008, we reported a new class of macrocyclic hosts and named “Pillar[5]arenes”. They combine the advantages and aspects of traditional hosts and have a composition similar to those of typical calix[n]arenes. Pillar[5]arenes have repeating units connected by methylene bridges at the para-position, and thus they have a unique symmetrical pillar architecture differing from the basket-shaped structure of meta-bridged calix[n]arenes. Pillar[5]arenes show high functionality similar to cyclodextrins, and can capture electron accepting guest molecules within their cavity similarly to cucurbit[n]urils. In this review, the synthesis, structure, rotation, host–guest properties, planar chirality and functionality of pillar[5]arenes are discussed, along with pillar[5]arene-based supramolecular architectures and the challenges in synthesizing pillar[6]arenes.


Pillar[5]arene Host–guest complex Polyrotaxane Planar chirality Functionality 



The author thanks the organizing committee of Host–Guest and Supramolecular Chemistry Society, Japan for giving him the HGCS Japan Award of Excellence 2010 and the opportunity of writing this review. He especially acknowledges Prof. Yoshiaki Nakamoto and Prof. Tada-aki Yamagishi (Kanazawa University) for their suggestions and discussions; Mr. Keisuke Kitajima and Mr. Takamichi Aoki (Kanazawa University) for their great contributions to this work. Dr. Shuhei Fujinami (Kanazawa University) for performing X-ray structural analysis. This work was partly supported by Grant-in-Aid for Young Scientists (B) (No. 19750110, 21750140) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT).


  1. 1.
    Nepogodiev, S.A., Stoddart, J.F.: Cyclodextrin-based catenanes and rotaxanes. Chem. Rev. 98, 1959–1976 (1998). doi: 10.1021/cr970049w CrossRefGoogle Scholar
  2. 2.
    Sauvage, J.P.: Transition metal-containing rotaxanes and catenanes in motion: toward molecular machines and motors. Acc. Chem. Res. 31, 611–619 (1998). doi: 10.1021/10.1021/ar960263r CrossRefGoogle Scholar
  3. 3.
    Fujita, M.: Self-assembly of [2]catenanes containing metals in their backbones. Acc. Chem. Res. 32, 53–61 (1999). doi: 10.1021/ar9701068 CrossRefGoogle Scholar
  4. 4.
    Wenz, G., Han, B.H., Müller, A.: Cyclodextrin rotaxanes and polyrotaxanes. Chem. Rev. 106, 782–817 (2006). doi: 10.1021/cr970027+ CrossRefGoogle Scholar
  5. 5.
    Harada, A.: Cyclodextrin-based molecular machines. Acc. Chem. Res. 34, 456–464 (2001). doi: 10.1021/ar000174l CrossRefGoogle Scholar
  6. 6.
    Stoddart, J.F.: Molecular machines. Acc. Chem. Res. 34, 410–411 (2001). doi: 10.1021/ar010084w CrossRefGoogle Scholar
  7. 7.
    Collin, J.P., Buchecker, C.D., Gaviña, P., Molero, M.C.J., Sauvage, J.P.: Shuttles and muscles: linear molecular machines based on transition metals. Acc. Chem. Res. 34, 477–487 (2001). doi: 10.1021/ar0001766 CrossRefGoogle Scholar
  8. 8.
    Niu, Z., Gibson, H.W.: Polycatenanes. Chem. Rev. 109, 6024–6046 (2009). doi: 10.1021/cr900002h CrossRefGoogle Scholar
  9. 9.
    Cantrill, S.J., Chichak, K.S., Peters, A.J., Stoddart, J.F.: Nanoscale borromean rings. Acc. Chem. Res. 38, 1–9 (2005). doi: 10.1021/ar040226x CrossRefGoogle Scholar
  10. 10.
    Harada, A., Hashidzume, M., Yamaguchi, H., Takashima, Y.: Polymeric rotaxanes. Chem. Rev. 106, 782–817 (2009). doi: 10.1021/cr970027+ Google Scholar
  11. 11.
    Okumura, Y., Ito, K.: The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv. Mater. 13, 485–487 (2001). doi: 10.1002/1521-4095(200104)13:7<485:AID-ADMA485>3.0.CO;2-T CrossRefGoogle Scholar
  12. 12.
    Araki, J., Ito, K.: Recent advances in the preparation of cyclodextrin-based polyrotaxanes and their applications to soft materials. Soft Matter. 3, 1456–1473 (2007). doi: 10.1039/B705688E CrossRefGoogle Scholar
  13. 13.
    Thoma, J.A., Stewart, M.L. (eds.): Starch: Chemistry and Technology. Academic Press, New York (1965)Google Scholar
  14. 14.
    Bender, M.L., Komiyama, M. (eds.): Bioorganic Chemistry. Academic Press, New York (1977)Google Scholar
  15. 15.
    Harata, K.: Structural aspects of stereodifferentiation in the solid state. Chem. Rev. 98, 1803–1827 (1998). doi: 10.1021/cr9700134 CrossRefGoogle Scholar
  16. 16.
    Pedersen, C.J.: Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89, 7017–7036 (1967). doi: 10.1021/ja01002a035 CrossRefGoogle Scholar
  17. 17.
    Dye, J.L.: Electrides: early examples of quantum confinement. Acc. Chem. Res. 42, 1564–1572 (2009). doi: 10.1021/ar9000857 CrossRefGoogle Scholar
  18. 18.
    Mezei, G., Zaleski, C.M., Pecoraro, V.L.: Structural and functional evolution of metallacrowns. Chem. Rev. 107, 4933–5003 (2007). doi: 10.1021/cr078200h CrossRefGoogle Scholar
  19. 19.
    Gutsche, C.D. (ed.): Calixarenes. The Royal Society of Chemistry, Cambridge (1989)Google Scholar
  20. 20.
    Vicens, J., Böhmer, V. (eds.): Calixarenes: A Versatile Class of Macrocyclic Compounds. Kluwer Academic, Dordrecht, the Netherlands (1991)Google Scholar
  21. 21.
    Ikeda, A., Shinkai, S.: Novel cavity design using calix[n]arene skeletons: toward molecular recognition and metal binding. Chem. Rev. 97, 1713–1734 (1997). doi: 10.1021/cr960385x CrossRefGoogle Scholar
  22. 22.
    Casnati, A., Sansone, F., Ungaro, R.: Peptido- and glycocalixarenes: playing with hydrogen bonds around hydrophobic cavities. Acc. Chem. Res. 36, 246–254 (2003). doi: 10.1021/ar0200798 CrossRefGoogle Scholar
  23. 23.
    Tahara, K., Yobe, Y.: Molecular loops and belts. Chem. Rev. 106, 5274–5290 (2006). doi: 10.1021/cr050556a CrossRefGoogle Scholar
  24. 24.
    Kaleta, J., Mazal, C.: A triangular macrocycle altering planar and bulky sections in its molecular backbone. Org. Lett. 13, 1326–1329 (2011). doi: 10.1021/ol1031816 CrossRefGoogle Scholar
  25. 25.
    Gessner, V.H., Tilley, T.D.: Diphenylanthracene macrocylces from reductive zirconocene coupling: on the edge of steric overload. Org. Lett. 13, 1154–1157 (2011). doi: 10.1021/ol2000099 CrossRefGoogle Scholar
  26. 26.
    Chen, G., Mahmud, I., Dawe, L.N., Daniels, L.M., Zhao, Y.: Synthesis and properties of conjugated oligoyne-centered π-extended tetrathiafulvalene analogues and related macromolecular systems. J. Org. Chem. 76, 2701–2715 (2011). doi: 10.1021/jo2000447 CrossRefGoogle Scholar
  27. 27.
    Tominaga, M., Masu, H., Azumaya, I.: Construction and charge-transfer complexation of adamantane-based macrocycles and a cage with aromatic ring moieties. J. Org. Chem. 74, 8754–8760 (2009). doi: 10.1021/jo9018842 CrossRefGoogle Scholar
  28. 28.
    Tominaga, M., Masu, H., Katagiri, K., Kato, T., Azumaya, I.: Triple helicate constructed by covalent bondings: crystal structure and effective synthesis based on propeller-like substructures. Org. Lett. 7, 3785–3787 (2005). doi: 10.1021/ol051477o CrossRefGoogle Scholar
  29. 29.
    Lou, K., Prior, A.M., Desper, J., Hua, D.H.: Synthesis of cyclododeciptycene quinones. J. Am. Chem. Soc. 132, 17635–17641 (2010). doi: 10.1021/ja1088309 CrossRefGoogle Scholar
  30. 30.
    Shorthill, B.J., Avetta, C.T., Glass, T.E.: Shape-selective sensing of lipids in aqueous solution by a designed fluorescent molecular tube. J. Am. Chem. Soc. 126, 12732–12733 (2004). doi: 10.1021/ja047639d CrossRefGoogle Scholar
  31. 31.
    Yokoyama, A., Maruyama, T., Tagami, K., Masu, H., Katagiri, K., Azumaya, I., Yokozawa, T.: One-pot synthesis of cyclic triamides with a triangular cavity from trans-stilbene and diphenylacetylene monomers. Org. Lett. 10, 3207–3210 (2008). doi: 10.1021/ol801083r CrossRefGoogle Scholar
  32. 32.
    Sarri, P., Venturi, F., Cuda, F., Roelens, S.: Binding of acetylcholine and tetramethylammonium to flexible cyclophane receptors: improving on binding ability by optimizing host’s geometry. J. Org. Chem. 69, 3654–3661 (2004). doi: 10.1021/jo049899j CrossRefGoogle Scholar
  33. 33.
    Rossom, W.V., Robeyns, K., Ovaere, M., Meervelt, L.V., Dehaen, W., Maes, W.: Odd-numbered oxacalix[n]arenes (n = 5, 7): synthesis and solid-state structures. Org. Lett. 13, 126–129 (2011). doi: 10.1021/ol1026969 CrossRefGoogle Scholar
  34. 34.
    Freeman, W.A., Mock, W.L., Shih, N.Y.: Cucurbituril. J. Am. Chem. Soc. 103, 7367–7368 (1981). doi: 10.1021/ja00414a070 CrossRefGoogle Scholar
  35. 35.
    Kim, J., Jung, I.S., Kim, S.Y., Lee, E., Kang, J.K., Sakamoto, S., Yamaguchi, K., Kim, K.: New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8). J. Am. Chem. Soc. 122, 540–541 (2000). doi: 10.1021/ja993376p CrossRefGoogle Scholar
  36. 36.
    Lee, J.W., Samal, S., Selvapalam, N., Kim, H.J., Kim, K.: Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Acc. Chem. Res. 36, 621–630 (2000). doi: 10.1021/ar020254k CrossRefGoogle Scholar
  37. 37.
    Lagona, J., Mukhopadhyay, P., Chakrabarti, S., Isaacs, L.: The cucurbituril family. Angew. Chem. Int. Ed. 44, 4844–4870 (2005). doi: 10.1002/anie.200460675 CrossRefGoogle Scholar
  38. 38.
    Svec, J., Necas, M., Sindelar, V.: Bambus[6]uril. Angew. Chem. Int. Ed. 49, 2378–2381 (2010). doi: 10.1002/anie.201000420 Google Scholar
  39. 39.
    Day, A., Arnold, A.P., Blanch, R.J., Shushall, B.: Controlling factors in the synthesis of cucurbituril and its homologues. J. Org. Chem. 66, 8094–8100 (2001). doi: 10.1021/jo015897c CrossRefGoogle Scholar
  40. 40.
    Furukawa, S., Uji-i, H., Tahara, K., Ichikawa, T., Sonoda, M., De Schryver, F.C., Tobe, Y., De Feyter, S.: Molecular geometry directed kagomé and honeycomb networks: toward two-dimensional crystal engineering. J. Am. Chem. Soc. 128, 3502–3503 (2006). doi: 10.1021/ja0583362 CrossRefGoogle Scholar
  41. 41.
    Miyake, K., Yasuda, S., Harada, A., Sumaoka, J., Komiyama, M., Shigekawa, H.: Formation process of cyclodextrin necklace—analysis of hydrogen bonding on a molecular level. J. Am. Chem. Soc. 125, 5080–5085 (2003). doi: 10.1021/ja026224u CrossRefGoogle Scholar
  42. 42.
    Shigekawa, H., Miyake, K., Sumaoka, J., Harada, A., Komiyama, M.: The molecular abacus: STM manipulation of cyclodextrin necklace. J. Am. Chem. Soc. 122, 5411–5412 (2000). doi: 10.1021/ja000037j CrossRefGoogle Scholar
  43. 43.
    Nishimura, D., Takashima, Y., Aoki, H., Takahashi, T., Yamaguchi, H., Ito, S., Harada, A.: Single-molecular imaging of rotaxane based on glass substrates: observations of rotary movement of a rotor. Angew. Chem. Int. Ed. 47, 6077–6079 (2008). doi: 10.1002/anie.200801431 CrossRefGoogle Scholar
  44. 44.
    Ogoshi, T., Kanai, S., Fujunami, S., Yamagishi, T., Nakamoto, Y.: Para-bridged symmetrical pillar[5]arenes: their lewis acid-catalyzed synthesis and host-guest property. J. Am. Chem. Soc. 130, 5022–5023 (2008). doi: 10.10210.1021/ja711260m CrossRefGoogle Scholar
  45. 45.
    Ogoshi, T., Aoki, T., Kitajima, K., Fujinami, S., Yamagishi, T., Nakamoto, Y.: Facile, rapid, and high-yield synthesis of pillar[5]arene from commercially available reagents and its X-ray crystal structure. J. Org. Chem. 76, 328–331 (2011). doi: 10.1021/jo1020823 CrossRefGoogle Scholar
  46. 46.
    Gribble, G.W., Nutaitis, C.F.: []Paracyclophane and []paracyclophane. Tetrahedron Lett. 26, 6023–6026 (1985). doi: 10.1016/S0040-4039(00)95115-3 CrossRefGoogle Scholar
  47. 47.
    Ogoshi, T., Kitajima, K., Umeda, K., Hiramitsu, S., Kanai, S., Fujinami, S., Yamagishi, T., Nakamoto, Y.: Lewis acid-catalyzed synthesis of dodecamethoxycalix[4]arene from 1,3,5-trimethoxybenzene and its conformational behavior and host–guest property. Tetrahedron 65, 10644–10649 (2009). doi: 10.1016/j.tet.2009.10.059 CrossRefGoogle Scholar
  48. 48.
    Mclldowie, M.J., Mocerino, M., Skelton, B.W., White, A.H.: Facile lewis acid catalyzed synthesis of C4 symmetric resorcinarenes. Org. Lett. 2, 3869–3871 (2000). doi: 10.1021/ol006608u CrossRefGoogle Scholar
  49. 49.
    Iwanek, W., Urbaniak, M., Bocheńska, M.: The template synthesis and complexation properties of methoxypyrogallo[4]arene. Tetrahedron 58, 2239–2243 (2002). doi: 10.1016/S0040-4020(02)00097-2 CrossRefGoogle Scholar
  50. 50.
    Rekharsky, M.V., Inoue, Y.: Complexation thermodynamics of cyclodextrins. Chem. Rev. 98, 1875–1918 (1998). doi: 10.1021/cr970015o CrossRefGoogle Scholar
  51. 51.
    Negishi, E., Anastasia, L.: Palladium-catalyzed alkynylation. Chem. Rev. 103, 1979–2018 (2003). doi: 10.1021/cr020377i CrossRefGoogle Scholar
  52. 52.
    Moore, J.S.: Shape-persistent molecular architectures of nanoscale dimension. Acc. Chem. Res. 30, 402–413 (1997). doi: 10.1021/ar950232g CrossRefGoogle Scholar
  53. 53.
    Sonogashira, K., Tohda, Y., Hagiwara, N.: A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett. 16, 4467–4470 (1975). doi: 10.1016/S0040-4039(00)91094-3 CrossRefGoogle Scholar
  54. 54.
    Chen, Q.Y., Yang, Z.Y.: Palladium-catalyzed reaction of phenyl fluoroalkanesulfonates with alkynes and alkenes. Tetrahedron Lett. 27, 1171–1174 (1986). doi: 10.1016/S0040-4039(00)84208-2 CrossRefGoogle Scholar
  55. 55.
    Ogoshi, T., Umeda, K., Yamagishi, T., Nakamoto, Y.: Through-space π-delocalized pillar[5]arene. Chem. Commun. 4874–4876 (2009). doi: 10.1039/b907894k
  56. 56.
    Ogoshi, T., Masaki, K., Shiga, R., Kitajima, K., Yamagishi, T.: Planar-chiral macrocyclic host pillar[5]arene: no rotation of units and isolation of enantiomers by introducing bulky substituents. Org. Lett. 13, 1264–1266 (2011). doi: 10.1021/ol200062j CrossRefGoogle Scholar
  57. 57.
    Ogoshi, T., Hashizume, M., Yamagishi, T., Nakamoto, Y.: Synthesis, conformational and host–guest properties of water-soluble pillar[5]arene. Chem. Commun. 46, 3708–3710 (2010). doi: 10.1039/c0cc00348d CrossRefGoogle Scholar
  58. 58.
    Hu, X.B., Chen, L., Si, W., Yu, Y., Hou, J.L.: Pillar[5]arene decaamine: synthesis, encapsulation of very long linear diacids and formation of ion pair-stopped [2]rotaxanes. Chem. Commun. 47, 4694–4696 (2011). doi: 10.1039/c1cc10633c Google Scholar
  59. 59.
    Ogoshi, T., Shiga, R., Hashizume, M., Yamagishi, T.: “Clickable” pillar[5]arenes. Chem. Commun. 47, 6927–6929 (2011). doi: 10.1039/c1cc11864a CrossRefGoogle Scholar
  60. 60.
    Takahashi, K., Hattori, K., Toda, F.: Monotosylated α- and β-cyclodextrins prepared in an alkaline aqueous solution. Tetrahedron Lett. 25, 3331–3334 (1984). doi: 10.1016/S0040-4039(01)81377-0 CrossRefGoogle Scholar
  61. 61.
    Ikeda, H., Nagano, Y., Du, Y.-q., Ikeda, T., Toda, F.: Modifications of the secondary hydroxyl side of α-cyclodextrin and NMR studies of them. Tetrahdron Lett. 31, 5045–5048 (1990). doi: 10.1016/S0040-4039(00)97802-X CrossRefGoogle Scholar
  62. 62.
    Villalonga, R., Cao, R., Fragoso, A.: Supramolecular chemistry of cyclodextrins in enzyme technology. Chem. Rev. 107, 3088–3116 (2007). doi: 10.1021/cr050253g CrossRefGoogle Scholar
  63. 63.
    Pearce, A.J., Sinaÿ, P.: Diisobutylaluminum-promoted regioselective de-O-benzylation of perbenzylated cyclodextrins: a powerful new strategy for the preparation of selectively modified cyclodextrins. Angew. Chem. Int. Ed. 39, 3610–3612 (2000). doi: 10.1002/1521-3773(20001016)39:20<3610:AID-ANIE3610>3.0.CO;2-V CrossRefGoogle Scholar
  64. 64.
    Jon, S.Y., Selvapalam, N., Oh, D.H., Kang, J.K., Kim, S.Y., Jeon, Y.J., Lee, J.W., Kim, K.: Facile synthesis of cucurbit[n]uril derivatives via direct functionalization: expanding utilization of cucurbit[n]uril. J. Am. Chem. Soc. 125, 10186–10187 (2003). doi: 10.1021/ja036536c CrossRefGoogle Scholar
  65. 65.
    Ogoshi, T., Demachi, K., Kitajima, K., Yamagishi, T.: Monofunctionalized pillar[5]arenes: synthesis and supramolecular structure. Chem. Commun 47, 7164–7166 (2011). doi: 10.1039/c1cc12333e CrossRefGoogle Scholar
  66. 66.
    Ogoshi, T., Kitajima, K., Fujinami, S., Yamagishi, T. Synthesis and X-ray crystal structure of difunctionalized pillar[5]arene at A1/B2 positions by in situ cyclization and deprotection. Chem. Commun. 47 (2011). doi: 10.1039/c1cc13546e
  67. 67.
    Ogoshi, T., Kitajima, K., Aoki, T., Fujinami, S., Yamagishi, T., Nakamoto, Y.: Synthesis and conformational characteristics of alkyl-substituted pillar[5]arenes. J. Org. Chem. 75, 3268–3273 (2010). doi: 10.1021/jo100273n CrossRefGoogle Scholar
  68. 68.
    Han, C., Ma, F., Zibin, Z., Xia, B., Yu, Y., Huang, F.: DIBPillar[n]arenes (n = 5, 6): syntheses, X-ray crystal structures, and complexation with n-octyltriethyl ammonium hexafluorophosphate. Org. Lett. 12, 4360–4363 (2010). doi: 10.1021/ol1018344 CrossRefGoogle Scholar
  69. 69.
    Ogoshi, T., Shiga, R., Yamagishi, T., Nakamoto, Y.: Planar-chiral pillar[5]arene: chiral switches induced by multi-external stimulus of temperature, solvents, and addition of achiral guest molecule. J. Org. Chem. 76, 618–622 (2011). doi: 10.1021/jo1021508 CrossRefGoogle Scholar
  70. 70.
    Ogoshi, T., Kitajima, K., Yamagishi, T., Nakamoto, Y.: Synthesis and conformational characteristics of nonsymmetric pillar[5]arene. Org. Lett. 12, 636–638 (2010). doi: 10.1021/ol902877w CrossRefGoogle Scholar
  71. 71.
    Kou, Y., Tao, H., Cao, D., Fu, Z., Schollmeyer, D., Meier, H.: Synthesis and conformational properties of nonsymmetric pillar[5]arenes and their acetonitrile inclusion compounds. Eur. J. Org. Chem. 48, 9721–9723 (2010). doi: 10.1002/ejoc.201000718 Google Scholar
  72. 72.
    Zibin, Z., Luo, Y., Xia, B., Han, C., Yu, Y., Chen, X., Huang, F.: Four constitutional isomers of BMpillar[5]arene: synthesis, crystal structures and complexation with n-octyltrimethyl ammonium hexafluorophosphate. Chem. Commun. 47, 2417–2419 (2011). doi: 10.1039/c0cc03732j CrossRefGoogle Scholar
  73. 73.
    Zhang, Z., Xia, B., Han, C., Yu, Y., Huang, F.: Syntheses of copillar[5]arenes by co-oligomerization of different monomers. Org. Lett. 12, 3285–3287 (2010). doi: 10.1021/ol100883k CrossRefGoogle Scholar
  74. 74.
    Zibin, Z., Luo, Y., Chen, J., Dong, S., Yu, Y., Ma, Z., Huang, F.: Formation of linear supramolecular polymers that is driven by C–H π interactions in solution and in the solid state. Angew. Chem. Int. Ed. 50, 1397–1401 (2011). doi: 10.1002/anie.201006693 CrossRefGoogle Scholar
  75. 75.
    Stewart, D.R., Gutsche, C.D.: Isolation, characterization, and conformational characteristics of p-tert-butylcalix[9–20]arenes. J. Am. Chem. Soc. 121, 4136–4146 (1999). doi: 10.1021/ja983964n CrossRefGoogle Scholar
  76. 76.
    Huang, W.H., Liu, S., Zavalij, P.Y., Isaacs, L.: Nor-seco-cucurbit[10]uril exhibits homotropic allosterism. J. Am. Chem. Soc. 128, 14744–14745 (2006). doi: 10.1021/ja064776x CrossRefGoogle Scholar
  77. 77.
    Cao, D., Kou, Y., Liang, J., Chen, Z., Wang, L., Meier, H.: A facile and efficient preparation of pillararenes and a pillarquinone. Angew. Chem. Int. Ed. 48, 9721–9723 (2009). doi: 10.1002/anie.200904765 CrossRefGoogle Scholar
  78. 78.
    Gutsche, C.D., Bauer, L.J. Calixarenes. 5. Dynamic NMR characteristics of p-tert-butylcalix[4]-arene and p-tert-butylcalix[8]arene. Tetrahedron Lett. 22, 4763–4766 (1981). doi: 10.1016/S0040-4039(01)92337-8
  79. 79.
    Iwamoto, K., Araki, K., Shinkai, S.: Conformations and structures of tetra-O-alkyl-p-tert-butylcalix[4]arenes. How is the conformation of calix[4]arenes immobilized? J. Org. Chem. 56, 4955–4962 (1991). doi: 10.1021/jo00016a027 CrossRefGoogle Scholar
  80. 80.
    Oi, S., Miyano, S.: Design and synthesis of chiral stationary phase derived from (S)-[10]paracyclophane-13-carboxylic acid for the HPLC separation of enantiomers. Chem. Lett. 21, 987–990 (1992)CrossRefGoogle Scholar
  81. 81.
    Hattori, T., Harada, N., Oi, S., Abe, H., Miyano, S.: 1,12-Dioxa[12](1,4)naphthalenophane-14-carboxylic acid: practical synthesis, resolution and absolute configuration of the enantiomers. Tetrahedron Asymmetr. 6, 1043–1046 (1995). doi: 10.1016/0957-4166(95)00120-E CrossRefGoogle Scholar
  82. 82.
    Fiesel, R., Huber, J., Scherf, U.: Synthesis of an optically active poly(para-phenylene) ladder polymer. Angew. Chem. Int. Ed. 35, 2111–2113 (1996). doi: 10.1002/anie.199621111 CrossRefGoogle Scholar
  83. 83.
    Fiesel, R., Huber, J., Apel, U., Enkelmann, V., Hentschke, R., Scherf, U., Cabrera, K.: Novel chiral poly(para-phenylene) derivatives containing cyclophane-type moieties. Macromol. Chem. Phys. 198, 2623–2650 (1997). doi: 10.1002/macp.1997.021980901 CrossRefGoogle Scholar
  84. 84.
    Katoono, R., Kawai, H., Hujiwara, K., Suzuki, T.: [10]Paracyclophanediamides and their octadehydro derivatives: novel exotopic receptors with hydrogen-bonding sites on the bridge. Tetrahedron Lett. 45, 8455–8459 (2004). doi: 10.1016/j.tetlet.2004.09.115 CrossRefGoogle Scholar
  85. 85.
    Ogoshi, T., Kitajima, K., Aoki, T., Yamagishi, T., Nakamoto, Y.: Effect of an intramolecular hydrogen bond belt and complexation with the guest on the rotation behavior of phenolic units in pillar[5]arenes. J. Phys. Chem. Lett. 1, 817–821 (2010). doi: 10.1021/jz900437r CrossRefGoogle Scholar
  86. 86.
    Li, C., Xu, Q., Li, J., Yao, F., Jia, X.: Complex interactions of pillar[5]arene with paraquats and bis(pyridinium) derivatives. Org. Biomol. Chem. 8, 1568–1576 (2010). doi: 10.1039/b920146g CrossRefGoogle Scholar
  87. 87.
    Ogoshi, T., Tanaka, S., Yamagishi, T., Nakamoto, Y.: Ionic liquid molecules (ILs) as novel guests for pillar[5]arene: 1:2 host-guest complexes between pillar[5]arene and ILs in organic media. Chem. Lett. 40, 96–98 (2011). doi: 10.1246/cl.2011.96 CrossRefGoogle Scholar
  88. 88.
    Monk, P.M.S. (ed.): The Viologens Physicochemical Properties, Synthesis and Applications of the Salts of 4,4′-Bipyridine. Wiley, New York (1998)Google Scholar
  89. 89.
    Li, C., Zhao, L., Li, J., Ding, X., Chen, S., Zhang, Q., Yu, Y., Jia, X.: Self-assembly of [2]pseudorotaxanes based on pillar[5]arene and bis(imidazolium) cations. Chem. Commun. 46, 9016–9018 (2010). doi: 10.1039/c0cc03575k CrossRefGoogle Scholar
  90. 90.
    Strutt, N.L., Forgan, R.S., Spruell, J.M., Botros, Y.Y., Stoddart, J.F.: Monofunctionalized pillar[5]arene as a host for alkanediamines. J. Am. Chem. Soc. 133, 5668–5671 (2011). doi: 10.1021/ja111418j CrossRefGoogle Scholar
  91. 91.
    Harada, A., Kamachi, M.: Complex formation between poly(ethylene glycol) and α-cyclodextrin. Macromolecules 23, 2821–2823 (1990). doi: 10.1021/ma00212a039 CrossRefGoogle Scholar
  92. 92.
    Harada, A.: Design and construction of supramolecular architectures consisting of cyclodextrins and polymers. Adv. Polym. Sci. 133, 141–191 (1997). doi: 10.1007/3-540-68442-5_4 CrossRefGoogle Scholar
  93. 93.
    Harada, A., Li, J., Kamachi, M.: The molecular necklace: a rotaxane containing many threaded α-cyclodextrins. Nature 356, 325–327 (1992). doi: 10.1038/356325a0 CrossRefGoogle Scholar
  94. 94.
    Ito, K.: Novel cross-linking concept of polymer network: synthesis, structure, and properties of slide-ring gels with freely movable junctions. Polym. J. 39, 489–499 (2007). doi: 10.1295/polymj.PJ2006239 CrossRefGoogle Scholar
  95. 95.
    Wu, Y.L., Li, J.: Synthesis of supramolecular nanocapsules based on threading of multiple cyclodextrins over polymers on gold nanoparticles. Angew. Chem. Int. Ed. 48, 3842–3845 (2009). doi: 10.1002/anie.200805341 CrossRefGoogle Scholar
  96. 96.
    Ooya, T., Eguchi, M., Yui, N.: Supramolecular design for multivalent interaction: maltose mobility along polyrotaxane enhanced binding with concanavalin A. J. Am. Chem. Soc. 125, 13016–13017 (2003). doi: 10.1021/ja034583z CrossRefGoogle Scholar
  97. 97.
    Reczek, J.J., Kennedy, A.A., Halbert, B.T., Urbach, A.R.: Multivalent recognition of peptides by modular self-assembled receptors. J. Am. Chem. Soc. 131, 2408–2415 (2009). doi: 10.1021/ja808936y CrossRefGoogle Scholar
  98. 98.
    Tan, Y., Choi, S.W., Lee, J.W., Ko, Y.H., Kim, K.: Synthesis and characterization of novel side-chain pseudopolyrotaxanes containing cucurbituril. Macromolecules 35, 7161–7165 (2002). doi: 10.1021/ma020534f CrossRefGoogle Scholar
  99. 99.
    Ooya, T., Inoue, D., Choi, H.S., Kobayashi, Y., Loethen, S., Thompson, D.H., Ko, Y.H., Kim, K., Yui, N.: pH-responsive movement of cucurbit[7]uril in a diblock polypseudorotaxane containing dimethyl α-cyclodextrin and cucurbit[7]uril. Org. Lett. 8, 3159–3162 (2006). doi: 10.1021/ol060697e CrossRefGoogle Scholar
  100. 100.
    Liu, Y., Ke, C.F., Zhang, H.Y., Wu, W.J., Shi, J.: Reversible 2D pseudopolyrotaxanes based on cyclodextrins and cucurbit[6]uril. J. Org. Chem. 72, 280–283 (2007). doi: 10.1021/jo0617159 CrossRefGoogle Scholar
  101. 101.
    Ogoshi, T., Masuda, K., Yamagishi, T., Nakamoto, Y.: Side-chain polypseudorotaxanes with heteromacrocyclic receptors of cyclodextrins (CDs) and cucurbit[7]uril (CB7): their contrast lower critical solution temperature behavior with α-CD, γ-CD, and CB7. Macromolecules 42, 8003–8005 (2009). doi: 10.1021/ma901474b CrossRefGoogle Scholar
  102. 102.
    Ogoshi, T., Nishida, Y., Yamagishi, T., Nakamoto, Y.: Polypseudorotaxane constructed from pillar[5]arene and viologen polymer. Macromolecules 43, 3145–3147 (2010). doi: 10.1021/ma100079g CrossRefGoogle Scholar
  103. 103.
    Ogoshi, T., Nishida, Y., Yamagishi, T., Nakamoto, Y.: High yield synthesis of polyrotaxane constructed from pillar[5]arene and viologen polymer and stabilization of its radical cation. Macromolecules 43, 7068–7072 (2010). doi: 10.1021/ma101320z CrossRefGoogle Scholar
  104. 104.
    Zhao, T., Beckham, H.W.: Direct synthesis of cyclodextrin-rotaxanated poly(ethylene glycol)s and their self-diffusion behavior in dilute solution. Macromolecules 36, 9859–9865 (2003). doi: 10.1021/ma035513f CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical Engineering, Graduate School of Natural Science and TechnologyKanazawa UniversityKanazawaJapan

Personalised recommendations