Anion-selective receptors based on dinuclear copper(II) and nickel(II) cage complexes of bis-salicylaldimines

  • John Yu-Chih Chang
  • Simon Parsons
  • Paul G. PliegerEmail author
  • Peter A. Tasker
Original Article


The selectivity, anion uptake and exchangeability of anion-binding by metal salt extractants of the form [M2 L 2]4+ have been assessed by the method of anion exchange chromatography in biphasic systems. The order of sulfate-, nitrate-, and chloride-uptake into the solid copper(II) complex as of the dioxime pro-ligand N,N′-dimethyl-N,N′-hexamethylenedi(3-hydroxyiminomethyl-2-hydroxy-5-tert-butylbenzylamine (L 1 ) is 56, 42, and 16%, respectively, consistent with the relative magnitudes of formation constants for the inclusion complexes, [A⊂Cu2 L 1 2] n+ where A = anion, found in UV–vis titration studies in a single phase. X-ray structural determination of the bis-benzylimine pro-ligand, N,N′-dimethyl-N,N′-hexamethylenedi-(3-benzyliminomehyl-2-hydroxy-5-tert-butylbenzylamine), nickel(II) sulfato complex [SO4⊂Ni2 L 2 2]SO4 reveals the nickel atoms to have a significant tetrahedral distortion, providing more favourable sulfate-alkylammonium interactions within the cage.


Zwitterionic complexes Anion selectivity Nickel Copper 


  1. 1.
    Tasker, P.A., Plieger, P.G., West, L.C.: Metal complexes for hydrometallurgy and extraction. In: McCleverty, J.A., Meyer, T.B. (eds.) Comprehensive Coordination Chemistry II, vol. 5, pp. 759–808. Elsevier, Oxford (2004)CrossRefGoogle Scholar
  2. 2.
    McDonald, R.G., Whittington, B.I.: Atmospheric acid leaching of nickel laterites review Part 1. Sulfuric acid technologies. Hydrometallurgy 91, 35–55 (2008)CrossRefGoogle Scholar
  3. 3.
    Galbraith, S.G., L.F. Lindoy, P.A. Tasker, Plieger, P.G.: Simple procedures for assessing and exploiting the selectivity of anion extraction and transport. Dalton Trans. 1134–1136 (2006)Google Scholar
  4. 4.
    Galbraith, S.G., Henderson, D.K., Miller, H.A. Plieger, P.G., Tasker, P.A., Smith, K.J., West, L.C.: Development of extractants to transport metal salts in base metal recovery processes. Hydrometallurgy. In:Young, C. (ed.) Proceedings of 5th international symposium honoring Professor Ian M. Ritchie, Aug. 24–27. University of British Columbia, Vancouver, 1, pp. 941–954 (2003)Google Scholar
  5. 5.
    Akkus, N., Campbell, J.C., Davidson, J., Henderson, D.K., Miller, H.A., Parkin, A., Parsons, S., Plieger, P.G., Swart, R.M., Tasker, P.A., West, L.C.: Exploiting supramolecular chemistry in metal recovery: novel zwitterionic extractants for nickel(II) salts. Dalton Trans. 1932–1940 (2003)Google Scholar
  6. 6.
    Soldenhoff, K., Hayward, N., Wilkins, D.: Direct solvent extraction of cobalt and nickel from laterite-acid pressure leach liquors. EPD Congr. 1998, Proc. Sess. Symp. 153–165 (1998)Google Scholar
  7. 7.
    Gunn, D.M., Miller, H.A., Swart, R.M., Tasker, P.A., West, L.C., White, D.J.: New types of extractant to transport metal sulfates in base metal recovery processes. Int. Solvent Extr. Conf. 280–290 (2002)Google Scholar
  8. 8.
    Forgan, R.S., Davidson, J.E., Fabbiani, F.P.A., Galbraith, S.G., Henderson, D.K., Moggach, S.A., Parsons, S., Tasker, P.A., White, F.J.: Cation and anion selectivity of zwitterionic salicylaldoxime metal salt extractants. Dalton Trans. 39, 1763–1770 (2010)CrossRefGoogle Scholar
  9. 9.
    Kordosky, G.A.: Copper recovery using leach/solvent extraction/electrowinning technology: forty years of innovation, 2.2 million tons of copper annually. Int. Solvent Extr. Conf. 853–862 (2002)Google Scholar
  10. 10.
    Mackey, P.J.: Rich heritage of copper production in Canada. CIM Magazine 2, 35–42 (2007)Google Scholar
  11. 11.
    Forgan, R.S., Roach, B.D., Wood, P.A., White, F.J., Campbell, J., Henderson, D.K., Kamenetzky, E., McAllister, F.E., Parsons, S., Pidcock, E., Richardson, P., Swart, R.M., Tasker, P.A.: Using the outer coordination sphere to tune the strength of metal extractants. Inorg. Chem. 50, 4515–4522 (2011)CrossRefGoogle Scholar
  12. 12.
    Wenzel, M., Jameson, G.B., Ferguson, L.A., Knapp, Q.W., Forgan, R.S., White, F.J., Parsons, S., Tasker, P.A., Plieger, P.G.: Anion-induced contraction of helical receptors. Chem. Commun 28(24), 3606–3608 (2009)CrossRefGoogle Scholar
  13. 13.
    Wenzel, M., Knapp, Q.W., Plieger, P.G.: A bis-salicylaldoximato-copper(II) receptor for selective sulfate uptake. Chem. Commun. 47, 499–501 (2011)CrossRefGoogle Scholar
  14. 14.
    Plieger, P.G., Parsons, S., Parkin, A., Tasker, P.A.: Transport of metal salts; encapsulation of anions in dinuclear Cu(II) complexes [Cu2L2SO4]SO4 and [Cu2L2BF4](BF4)3, where L = 2,2′-[1,6-hexanediylbis[(methylimino)methylene]]bis[4-tert-butyl-6-(phenylazomethinyl)phenol]. J. Chem. Soc. Dalton Trans. 3928–3930 (2002)Google Scholar
  15. 15.
    Mercer, D.J., Loeb, S.J.: Metal-based anion receptors: an application of second-sphere coordination. Chem. Soc. Rev. 39, 3612–3620 (2010)CrossRefGoogle Scholar
  16. 16.
    Kang, S.-O., Llinares, J.M., Day, V.W., Bowman-James, K.: Cryptand-like anion receptors. Chem. Soc. Rev. 39, 3980–4003 (2010)CrossRefGoogle Scholar
  17. 17.
    Hay, B.P.: De novo structure-based design of anion receptors. Chem. Soc. Rev. 39, 3700–3708 (2010)CrossRefGoogle Scholar
  18. 18.
    Kim, J.I., Juwarker, H., Liu, X., Lah, M.S., Jeong, K.S.: Selective sulfate binding induces helical folding of an indolocarbazole oligomer in solution and solid state. Chem. Commun. 46, 764–766 (2010)CrossRefGoogle Scholar
  19. 19.
    Moyer, B.A., Delmau, L.H., Fowler, C.J., Ruas, A., Bostick, D.A., Sessler, J.L., Katayev, E., Pantos, G.D., Llinares, J.M., Hossain, A., Kang, S.O., Bowman-James, K.: Supramolecular chemistry of environmentally relevant anions. Adv. Inorg. Chem. 59, 175–204 (2007)CrossRefGoogle Scholar
  20. 20.
    Eller, L.R., Stepien, M., Fowler, C.J., Lee, J.T., Sessler, J.L., Moyer, B.A.: Octamethyl-octaundecylcyclo[8]pyrrole: a promising sulfate anion extractant. J. Am. Chem. Soc. 129, 11020–11021 (2007)CrossRefGoogle Scholar
  21. 21.
    Bowman-James, K.: Alfred Werner revisited: the coordination chemistry of anions. Acc. Chem. Res. 38, 671–678 (2005)CrossRefGoogle Scholar
  22. 22.
    Ilioudis, C.A., Steed, J.W.: Organic macrocyclic polyamine-based receptors for anions. J. Supramol. Chem. 1, 165–187 (2003)CrossRefGoogle Scholar
  23. 23.
    Choi, K., Hamilton, A.D.: Macrocyclic anion receptors based on directed hydrogen bonding interactions. Coord. Chem. Rev. 240, 101–110 (2003)CrossRefGoogle Scholar
  24. 24.
    Amendola, V., Fabbrizzi, L., Mangano, C., Pallavicini, P., Poggi, A., Taglietti, A.: Anion recognition by dimetallic cryptates. Coord. Chem. Rev. 219–221, 821–837 (2001)CrossRefGoogle Scholar
  25. 25.
    Gale, P.A.: Anion and ion-pair receptor chemistry: highlights from 2000 and 2001. Coord. Chem. Rev. 240, 191–221 (2003)CrossRefGoogle Scholar
  26. 26.
    Gale, P.A., Quesada, R.: Anion coordination and anion-templated assembly: highlights from 2002 to 2004. Coord. Chem. Rev. 250, 3219–3244 (2006)CrossRefGoogle Scholar
  27. 27.
    Mateus, P., Delgado, R., Brandao, P., Felix, V.: Polyaza cryptand receptor selective for dihydrogen phosphate. J. Org. Chem. 74, 8638–8646 (2009)CrossRefGoogle Scholar
  28. 28.
    Wichmann, K., Antonioli, B., Soehnel, T., Wenzel, M., Gloe, K., Gloe, K., Price, J.R., Lindoy, L.F., Blake, A.J., Schroeder, M.: Polyamine-based anion receptors: extraction and structural studies. Coord. Chem. Rev. 250, 2987–3003 (2006)CrossRefGoogle Scholar
  29. 29.
    Hennrich, G., Anslyn, E.V.: 1,3,5–2,4,6-functionalized, facially segregated benzenes-exploitation of sterically predisposed systems in supramolecular chemistry. Chem. Eur. J. 8, 2218–2224 (2002)CrossRefGoogle Scholar
  30. 30.
    Filby, M.H., Steed, J.W.: A modular approach to organic, coordination complex and polymer based podand hosts for anions. Coord. Chem. Rev. 250, 3200–3218 (2006)CrossRefGoogle Scholar
  31. 31.
    Wu, B., Liang, J., Yang, J., Jia, C., Yang, X.J., Zhang, H., Tang, N., Janiak, C.: Sulfate ion encapsulation in caged supramolecular structures assembled by second-sphere coordination. Chem. Commun. 15, 1762–1764 (2008)CrossRefGoogle Scholar
  32. 32.
    Ravikumar, I., Lakshminarayanan, P.S., Arunachalam, M., Suresh, E., Ghosh, P.: Anion complexation of a pentafluorophenyl-substituted tripodal urea receptor in solution and the solid state: selectivity toward phosphate. Dalton Trans. 4160–4168 (2009)Google Scholar
  33. 33.
    Zhuge, F., Wu, B., Liang, J., Yang, J., Liu, Y., Jia, C., Janiak, C., Tang, N., Yang, X.-J.: Full- or half-encapsulation of sulfate anion by a tris(3-pyridylurea) receptor: effect of the secondary coordination sphere. Inorg. Chem. 48, 10249–10256 (2009)CrossRefGoogle Scholar
  34. 34.
    Custelcean, R., Remy, P.: Selective crystallization of urea-functionalized capsules with tunable anion-binding cavities. Cryst. Growth Des. 9, 1985–1989 (2009)CrossRefGoogle Scholar
  35. 35.
    Warr, R.J., Westra, A.N., Bell, K.J., Chartres, J., Ellis, R., Tong, C., Simmance, T.G., Gadzhieva, A., Blake, A.J., Tasker, P.A., Schroder, M.: Selective extraction and transport of the [PtCl6]2− anion through outer-sphere coordination chemistry. Chem. Eur. J. 15, 4836–4850 (2009)CrossRefGoogle Scholar
  36. 36.
    Kumar, A., Sun, S–.S., Lees, A.J.: Directed assembly metallocyclic supramolecular systems for molecular recognition and chemical sensing. Coord. Chem. Rev. 252, 922–939 (2008)CrossRefGoogle Scholar
  37. 37.
    Steed, J.W.: Coordination and organometallic compounds as anion receptors and sensors. Chem. Soc. Rev. 38, 506–519 (2009)CrossRefGoogle Scholar
  38. 38.
    Mahoney Joseph, M., Nawaratna Gayathri, U., Beatty Alicia, M., Duggan Peter, J., Smith Bradley, D.: Transport of alkali halides through a liquid organic membrane containing a ditopic salt-binding receptor. Inorg Chem. 43, 5902–5907 (2004)CrossRefGoogle Scholar
  39. 39.
    Mahoney Joseph, M., Beatty Alicia, M., Smith Bradley, D.: Selective solid-liquid extraction of lithium halide salts using a ditopic macrobicyclic receptor. Inorg. Chem. 43, 7617–7621 (2004)CrossRefGoogle Scholar
  40. 40.
    Moyer, B.A., Bonnesen, P.V., Custelcean, R., Delmau, L.H., Hay, B.P.: Strategies for using host–guest chemistry in the extractive separations of ionic guests. Kem. Ind. 54, 65–87 (2005)Google Scholar
  41. 41.
    Holm, R.H., Swaminathan, K.: Nickel(II) complexes. IV. Bis(N-sec-alkylsalicylaldimine) complexes: conformational equilibriums in solution. Inorg. Chem. 2, 181–186 (1963)CrossRefGoogle Scholar
  42. 42.
    Holm, R.H., Swaminathan, K.: Nickel(II) complexes III. Bis-(N-arylsalicylaldimine) complexes. Inorg. Chem. 1, 599–607 (1962)CrossRefGoogle Scholar
  43. 43.
    Holm, R.H.: Nickel (II) complexes. II. The solution magnetism of bis(N-methylsalicylaldimine)nickel (II) and related complexes. J. Am. Chem. Soc. 83, 4683–4690 (1961)CrossRefGoogle Scholar
  44. 44.
    Holm, R.H., McKinney, T.M.: Magnetic observations of some substituted Ni(II) salicylaldimine complexes. J. Am. Chem. Soc. 82, 5506–5507 (1960)CrossRefGoogle Scholar
  45. 45.
    Holm, R.H.: Applications of isotropic shifts to the investigation of structures and structural equilibriums of metal complexes. Accounts Chem. Res. 2, 307–316 (1969)CrossRefGoogle Scholar
  46. 46.
    Parkin, A., Barr, G., Collins, A., Dong, W., Gilmore, C.J., Tasker, P.A., Wilson, C.C.: Using cluster analysis to study transition-metal geometries: four-coordinate complexes with two salicylaldiminato or related ligands. Acta Crystallogr. B: Struct. Sci. B63, 612–620 (2007)CrossRefGoogle Scholar
  47. 47.
    Akitsu, T.: Photofunctional supramolecular solution systems of chiral Schiff base nickel(II), copper(II), and zinc(II) complexes and photochromic azobenzenes. Polyhedron 26, 2527–2535 (2007)CrossRefGoogle Scholar
  48. 48.
    Akitsu, T., Einaga, Y.: Synthesis, crystal structures and electronic properties of Schiff base nickel(II) complexes: towards solvatochromism induced by a photochromic solute. Polyhedron. 24, 1869–1877 (2005)CrossRefGoogle Scholar
  49. 49.
    Li, Z.-X., Zhang, X.-L., Pu, X.-H.: Bis[2-(benzyliminomethyl)-4-chlorophenolato-k2 N, O]nickel(II). Acta Crystallogr. E Struct. Rep. Online E64, m202/1–m202/7 (2008)Google Scholar
  50. 50.
    Chen, S.Z., Xia, D.G.: Bis{2-[(E)-benzyliminomethyl]-4-methylphenolato-k2 N, O}nickel(II). Acta Crystallogr. E Struct. Rep. Online. E65, m923 (2009)CrossRefGoogle Scholar
  51. 51.
    Plieger, P.G., Tasker, P.A., Galbraith, S.G.: Zwitterionic macrocyclic metal sulfate extractants containing 3-dialkylaminomethylsalicylaldimine units. Dalton Trans. 313–318 (2004)Google Scholar
  52. 52.
    Sheldrick, G.M.: SHELXTL, 5.1. Bruker AXS, Madison (1998)Google Scholar
  53. 53.
    Van der Sluis, P., Spek, A.L.: BYPASS: an effective method for the refinement of crystal structures containing disordered solvent regions. Acta Crystallogr. A: Found. Crystallogr. A46, 194–201 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • John Yu-Chih Chang
    • 1
  • Simon Parsons
    • 1
  • Paul G. Plieger
    • 2
    Email author
  • Peter A. Tasker
    • 1
  1. 1.School of ChemistryUniversity of EdinburghEdinburghUK
  2. 2.Institute of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations