Advertisement

Thermodynamic stability of C3H8 hydrate of cubic structure IV using lattice dynamics

  • Maaouia Souissi
  • Rodion V. Belosludov
  • Oleg S. Subbotin
  • Hiroshi Mizuseki
  • Yoshiyuki Kawazoe
  • Vladimir R. Belosludov
Original article
  • 117 Downloads

Abstract

The thermodynamic properties of propane clathrate hydrate with cubic structure IV were studied using a method based on the solid solution theory of van der Waals and Platteeuw but allows one to take into account the influence of guest molecules on the host lattice and guest-guest interactions. The free energies, equations of state, and chemical potentials of this hydrate were estimated using this approach. The proposed theory was used for construction of “guest gas–hydrate–ice I h ” equilibrium curves of propane hydrates. It was found that the water framework of structure IV was dynamically stable and that the fully C3H8 filled structure was thermodynamically stable in the region of pressure from 43 to 50 MPa as compared with the hexagonal ice. The formation pressure of propane hydrate with structure IV is higher than that of propane hydrate with cubic structure II. However, a structural transformation from structure II to IV of propane hydrate was estimated under a pressure of 78 MPa at 290 K.

Keywords

Thermodynamic stability sIV clathrate hydrate C3H8 Lattice dynamics 

Notes

Acknowledgments

We would like to thank the New Energy and Industrial Technology Development Organization (NEDO) for supporting this work. The authors are also grateful for the continuous support of the HITACHI SR 11000-K2/51 supercomputing facility at the Institute for Materials Research, Tohoku University. M.S. also thanks the Ministry of Higher Education and Scientific Research of Tunisia as well as the GCOE program for financial support.

References

  1. 1.
    Sloan, E.D., Koh, C.A.: Clathrate Hydrates of Natural Gases, 3rd edn. CRC/Taylor Francis, Boca Raton (2008)Google Scholar
  2. 2.
    Von Stackelberg, M., Muller, H.R.: Feste gas hydrate II. Struktur and racmchemie. Z. Elektrochem. 58, 25–28 (1954)Google Scholar
  3. 3.
    Claussen, W.F.: A second water structure for inert gas hydrate. J. Chem. Phys. 19, 1425–1426 (1951)CrossRefGoogle Scholar
  4. 4.
    Pauling, L., Marsh, R.E.: The structure of chlorine hydrate. Proc. Natl. Acad. Sci. USA 38, 112–118 (1952)CrossRefGoogle Scholar
  5. 5.
    Ripmeester, J.A., Tse, J.S., Ratcliffe, C.I., Powell, B.M.: A new clathrate hydrate structure. Nature 325, 135–136 (1987)CrossRefGoogle Scholar
  6. 6.
    Udachin, K.A., Ratcliffe, C.I., Enright, G.D., Ripmeester, J.A.: Structure H hydrate: a single crystal diffraction study of 2,2-dimethylpentane 5(Xe, H2S)·34H2O. Supramol. Chem. 8, 173–176 (1997)CrossRefGoogle Scholar
  7. 7.
    Dyadin, Y.A., Larionov, E.G., Mirinski, D.S., Mikina, T.V., Starostina, L.I.: Clathrate formation in the Ar–H2O system under pressures up to 15000 bar. Mendeleev Commun. 1, 32–34 (1997)CrossRefGoogle Scholar
  8. 8.
    Dyadin, Y.A., Larionov, E.G., Mikina, T.V., Starostina, L.I.: Clathrate formation in Kr–H2O and Xe–H2O systems under pressures up to 15 kbar. Mendeleev Commun. 2, 74–76 (1997)CrossRefGoogle Scholar
  9. 9.
    Mao, W.L., Mao, H.K., Goncharov, A.F., Struzhkin, V.V., Guo, Q., Hu, J., Shu, J., Hemley, R.J., Somayazulu, M., Zhao, Y.: Hydrogen storage in molecular compounds. Science 297, 2247 (2002)CrossRefGoogle Scholar
  10. 10.
    Dyadin, Y.A., Larionov, E.G., Manakov, A.Y., Zhurko, F.V., Aladko, E.Y., Mikina, T.V., Komarov, V.Y.: Clathrate hydrates of hydrogen and neon. Mendeleev Commun. 5, 209 (1999)CrossRefGoogle Scholar
  11. 11.
    Mao, W.L., Mao, H.K.: Hydrogen storage in molecular compounds. Proc. Natl Acad. Sci. 101, 708 (2004)CrossRefGoogle Scholar
  12. 12.
    Struzhkin, V.V., Militzer, B., Mao, W.L., Mao, H.K., Hemley, R.J.: Hydrogen storage in molecular clathrates. Chem. Rev. 107, 4133 (2007)CrossRefGoogle Scholar
  13. 13.
    Strobel, T.A., Hester, K.C., Koh, C.A., Sum, A.K., Sloan, E.D.: Properties of the clathrates of hydrogen and developments in their applicability for hydrogen storage. Chem. Phys. Lett. 478, 97 (2009)CrossRefGoogle Scholar
  14. 14.
    Lokshin, K.A., Zhao, Y., He, D., Mao, W.L., Mao, H., Hemley, R.J., Lobanov, M.V., Greenblatt, M.: Structure and dynamics of hydrogen molecules in the novel clathrate hydrate by high pressure neutron diffraction. Phys. Rev. Lett. 93, 125503 (2004)CrossRefGoogle Scholar
  15. 15.
    Florusse, L.J., Peters, C.J., Schoonman, J., Hester, K.C., Koh, C.A., Dec, S.F., Marsh, K.N., Sloan, E.D.: Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate. Science 306, 469 (2004)CrossRefGoogle Scholar
  16. 16.
    Lee, H., Lee, J.W., Kim, D.Y., Park, J., Seo, Y.T., Zeng, H., Moudrakovski, I.L., Ratcliffe, C.I., Ripmeester, J.A.: Tuning clathrate hydrates for hydrogen storage. Nature 434, 743 (2005)CrossRefGoogle Scholar
  17. 17.
    Sugahara, T., Haag, J.C., Prasad, P.S.R., Warntjes, A.A., Sloan, E.D., Sum, A.K., Koh, C.A.: Increasing hydrogen storage capacity using tetrahydrofuran. J. Am. Chem. Soc. 131, 14616 (2009)CrossRefGoogle Scholar
  18. 18.
    Jeffrey, G.A.: Hydrate inclusion compounds. In: MacNicol, D.D., Toda, F., Bishop, R. (eds.) Comprehensive Supramolecular Chemistry, vol. 6, pp. 757–788. Pergamon Press, Oxford (1996)Google Scholar
  19. 19.
    Bode, H., Teufer, G.: Die Kristallstruktur der hexafluorophosphorsäure. Acta Crystallogr. 8, 611–614 (1955)CrossRefGoogle Scholar
  20. 20.
    Shin, K., Cha, J.-H., Seo, Y., Lee, H.: Physicochemical properties of ionic clathrate hydrate. Chem. Asian J. 5, 22 (2010)Google Scholar
  21. 21.
    Van der Waals, J.H., Platteeuw, J.C.: Clathrate solutions. Adv. Chem. Phys. 2, 1 (1959)CrossRefGoogle Scholar
  22. 22.
    Belosludov, V.R., Subbotin, O.S., Krupskii, D.S., Belosludov, R.V., Kawazoe, Y., Kudoh, J.: Physical and chemical properties of gas hydrates: theoretical aspects of energy storage application. Mater. Trans. 48, 704–710 (2007)CrossRefGoogle Scholar
  23. 23.
    Subbotin, O.S., Adamova, T.P., Belosludov, R.V., Mizuseki, H., Kawazoe, Y., Kudoh, J., Rodger, P.M., Belosludov, V.R.: Theoretical study of phase transitions in Kr and Ar clathrate hydrates from structure II to structure I under pressure. J. Chem. Phys. 131, 114507 (2009)CrossRefGoogle Scholar
  24. 24.
    Belosludov, R.V., Subbotin, O.S., Mizuseki, H., Kawazoe, Y., Belosludov, V.R.: Accurate description of phase diagram of clathrate hydrates at the molecular level. J. Chem. Phys. 131, 244510 (2009)CrossRefGoogle Scholar
  25. 25.
    Belosludov, R.V., Igumenov, I.K., Belosludov, V.R., Shpakov, V.P.: Dynamical and thermodynamical properties of the acetylacetones of copper, aluminium, indium, and rhodium. Mol. Phys. 82, 51–66 (1994)CrossRefGoogle Scholar
  26. 26.
    Yasuda, K., Ohmura, R.: Phase equilibrium for clathrate hydrates formed with methane, ethane, propane, or carbon dioxide at temperatures below the freezing point of water. J. Chem. Eng. Data 53, 2182–2188 (2008)CrossRefGoogle Scholar
  27. 27.
    Skiba, S.S., Larionov, E.G., Manakov, A.Y., Kolesov, B.A., Ancharov, A.I., Aladko, E.Y.: Double clathrate hydrate of propane and hydrogen. J. Incl. Phenom. Macromol. Chem. 63, 383 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Maaouia Souissi
    • 1
  • Rodion V. Belosludov
    • 1
  • Oleg S. Subbotin
    • 2
  • Hiroshi Mizuseki
    • 1
  • Yoshiyuki Kawazoe
    • 1
  • Vladimir R. Belosludov
    • 2
  1. 1.Department of Materials ScienceInstitute for Materials Research (IMR)SendaiJapan
  2. 2.Nikolaev Institute of Inorganic Chemistry, Siberian BranchRussian Academy of ScienceNovosibirskRussia

Personalised recommendations