Study on the inclusion interaction of ethyl violet with cyclodextrins by MWNTs/Nafion modified glassy carbon electrode

Original Article

Abstract

The interactions of ethyl violet (EV) with cyclodextrins (CDs) were investigated by Multi-wall carbon nanotubes/Nafion composite film modified glassy carbon electrode (MWNTs/Nafion/GCE). It was found that the MWNTs/Nafion composite film can effectively catalyze the electrode reaction of EV. The variation of the electrochemical behavior of EV upon the addition of CDs indicated the formation of the inclusion complexes of EV with β-CD, heptakis (2,3,6-tri-O-methyl)-β-CD (TM-β-CD), heptakis (2,6-di-O-methyl)-β-CD (DM-β-CD), hydroxypropyl-β-CD (HP-β-CD), and carboxymethyl-β-CD (CM-β-CD). The stoichiometry ratios of EV and the above five CDs were found to be 1:1. The inclusion ability obeyed the order: CM-β-CD > HP-β-CD > TM-β-CD > DM-β-CD > β-CD. The results showed that the modified β-CDs exhibited stronger binding ability than native β-CD, especially the charged CM-β-CD, which implied that the inclusion capacity depends on not only size matching and hydrophobicity but also electrostatic interaction. 1HNMR spectra and molecule mechanics calculations suggested that EV was included into the cavity of β-CD from the wider side.

Keywords

Ethyl violet Carbon nanotubes Nafion Cyclodextrin Differential pulse voltammetry 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No: 20875059) and the Natural Science Foundation of Shanxi Province of China (No: 2009011012-1).

Supplementary material

10847_2010_9811_MOESM1_ESM.doc (123 kb)
Supplementary material 1 (DOC 123 kb)

References

  1. 1.
    He, H.L.: Dyes. Chemical Industry Press, Beijing (2004)Google Scholar
  2. 2.
    Sirés, I., Guivarch, E., Oturan, N., Oturan, M.A.: Efficient removal of triphenylmethane dyes from aqueous medium by in situ electrogenerated Fenton’s reagent at carbon-felt cathode. Chemosphere 72, 592–600 (2008)CrossRefGoogle Scholar
  3. 3.
    Savarino, P., Parlati, S., Buscaino, R., Piccinini, P., Barolo, C., Montoneri, E.: Effects of additives on the dyeing of polyamide fibres. Part II: Methyl-β-cyclodextrin. Dyes Pigm. 69, 7–12 (2006)CrossRefGoogle Scholar
  4. 4.
    Vonĉina, B., Vivod, V., Jauŝovec, D.: β-Cyclodextrin as retarding reagent in polyacrylonitrile dyeing. Dyes Pigm. 74, 642–646 (2007)CrossRefGoogle Scholar
  5. 5.
    Jenkins, D.W., El-Tahlawy, K., El-Shafei, A., Freeman, H.S., Hudson, S.M.: Use of γ-cyclodextrin/epichlorohydrin copolymer in merging fabric formation and coloration processes. Color. Technol. 122, 345–349 (2006)CrossRefGoogle Scholar
  6. 6.
    Cireli, A., Yurdakul, B.: Application of cyclodextrin to the textile dyeing and washing processes. J. Appl. Polym. Sci. 100, 208–218 (2006)CrossRefGoogle Scholar
  7. 7.
    Steed, J.W., Atwood, J.L.: Supramolecular Chemistry, pp. 11–17. Wiley, New York (2009)CrossRefGoogle Scholar
  8. 8.
    Liu, Y., Li, L., Zhang, H.Y., Liang, P., Wang, H.: Inclusion complexation behavior of dyestuff guest molecules by a bridged bis(cyclomaltoheptaose)[bis(β-cyclodextrin)] with a pyromellitic acid diamide tether. Carbohydr. Res. 338, 1751–1757 (2003)CrossRefGoogle Scholar
  9. 9.
    Buschmann, H.J., Schollmeyer, E.: Cucurbituril and β-cyclodextrin as hosts for the complexation of organic dyes. J. Inclusion Phenom. Mol. Recognit. Chem. 29, 167–174 (1997)CrossRefGoogle Scholar
  10. 10.
    Iijima, T., Karube, Y.: The interaction of acid azo dyes with chemically modified β-cyclodextrins. Dyes Pigm. 36, 305–311 (1998)CrossRefGoogle Scholar
  11. 11.
    Isaacs, N.S., Young, D.J.: A volumetric study of molecular inclusion by α-cyclodextrin. Tetrahedron Lett. 40, 3953–3956 (1999)CrossRefGoogle Scholar
  12. 12.
    Suzuki, M., Ohmori, H., Kajtar, M., Szejtli, J., Vikmon, M.: The association of inclusion complexes of cyclodextrins with azo dyes. J. Inclusion Phenom. Mol. Recognit. Chem. 18, 255–264 (1994)CrossRefGoogle Scholar
  13. 13.
    Osella, D., Carretta, A., Nervi, C., Ravera, M., Gobetto, R.: Inclusion complexes of ferrocenes and β-cyclodextrins. Critical appraisal of the electrochemical evaluation of formation constants. Organometallics 19, 2791–2797 (2000)CrossRefGoogle Scholar
  14. 14.
    Zhao, G.C., Zhu, J.J., Zhang, J.J., Chen, H.Y.: Voltammetric studies of the interaction of methylene blue with DNA by means of β-cyclodextrin. Anal. Chim. Acta 394, 337–344 (1999)CrossRefGoogle Scholar
  15. 15.
    Matsue, T., Evans, E.H., Osa, T., Kobayashi, N.: Electron-transfer reactions associated with host-guest complexation. Oxidation of ferrocenecarboxylic acid in the presence of β-cyclodextrin. J. Am. Chem. Soc. 107, 3411–3417 (1985)CrossRefGoogle Scholar
  16. 16.
    Yuan, Z.B., Zhu, M., Han, S.B.: Supramolecular inclusion complex formation and application of β-cyclodextrin with heteroanthracene ring cationic dyes. Anal. Chim. Acta 389, 291–298 (1999)CrossRefGoogle Scholar
  17. 17.
    Guo, Y.J., Pan, J.H., Li, X.M., Lu, F., Li, Y.Q.: Electroanalytical method of Acid Blue 120 and its supramolecular system with cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 56, 243–246 (2006)CrossRefGoogle Scholar
  18. 18.
    Caballero, J., Zamora, C., Aguayo, D., Yaňez, C., González-Nilo, F.D.: Study of the interaction between progesterone and β-cyclodextrin by electrochemical techniques and steered molecular dynamics. J. Phys. Chem. B 112, 10194–10201 (2008)CrossRefGoogle Scholar
  19. 19.
    Zhou, O., Shimoda, H., Gao, B., Oh, S., Fleming, L., Yue, G.Z.: Materials science of carbon nanotubes: fabrication, integration, and properties of macroscopic structures of carbon nanotubes. Acc. Chem. Res. 35, 1045–1053 (2002)CrossRefGoogle Scholar
  20. 20.
    Tasis, D., Tagmatarchis, N., Bianco, A., Prato, M.: Chemistry of carbon nanotubes. Chem. Rev. 106, 1105–1136 (2006)CrossRefGoogle Scholar
  21. 21.
    Zhu, Y.H., Zhang, Zh.L., Zhao, W., Pang, D.W.: Voltammetric behavior and determination of phenylephrine at a glassy carbon electrode modified with multi-wall carbon nanotubes. Sens. Actuators B 119, 308–314 (2006)CrossRefGoogle Scholar
  22. 22.
    Wang, J.X., Li, M.X., Shi, Z.J., Li, N.Q., Gu, Z.N.: Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. Anal. Chem. 74, 1993–1997 (2002)CrossRefGoogle Scholar
  23. 23.
    Zeng, J.X., Wei, W.Z., Wu, L., Liu, X.Y., Liu, K., Li, Y.: Fabrication of poly (toluidine blue O)/carbon nanotube composite nanowires and its stable low-potential detection of NADH. J. Electroanal. Chem. 595, 152–160 (2006)CrossRefGoogle Scholar
  24. 24.
    Shobha Jeykumari, D.R., Ramaprabhu, S., Sriman Nrayanan, S.: A thionine functionalized multiwalled carbon nanotube modified electrode for the determination of hydrogen peroxide. Carbon 45, 1340–1353 (2007)CrossRefGoogle Scholar
  25. 25.
    Hazani, M., Naaman, R., Hennrich, F., Kappes, M.M.: Confocal fluorescence imaging of DNA-functionalized carbon nanotubes. Nano. Lett. 3, 153–155 (2003)CrossRefGoogle Scholar
  26. 26.
    Liu, Y.T., Zhao, W., Huang, Z.Y., Gao, Y.F., Xie, X.M., Wang, X.H., Ye, X.Y.: Noncovalent surface modification of carbon nanotubes for solubility in organic solvents. Carbon 44, 1613–1616 (2006)CrossRefGoogle Scholar
  27. 27.
    O’Connell, M.J., Boul, P., Ericson, L.M., Huffman, C., Wang, Y., Haroz, E., Kuper, C., Tour, J., Ausman, K.D., Smalley, R.E.: Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett. 342, 265–271 (2001)CrossRefGoogle Scholar
  28. 28.
    Kim, J.H., Sharma, A.K., Lee, Y.S.: Synthesis of polypyrrole and carbon nano-fiber composite for the electrode of electrochemical capacitors. Mater. Lett. 60, 1697–1701 (2006)CrossRefGoogle Scholar
  29. 29.
    Cochet, M., Maser, W.K., Benito, A.M., Callejas, M.A., Martinez, M.T., Benoit, J.M., Schreiber, J., Chauvet, O.: Synthesis of a new polyaniline/nanotube composite: in situ polymerization and charge transfer through site-selective interaction. Chem. Commun. 1, 1450–1451 (2001)CrossRefGoogle Scholar
  30. 30.
    Du, P., Liu, S.N., Wu, P., Cai, C.X.: Single-walled carbon nanobubes functionalized with poly (nile blue A) and their application to dehydrogenase-based biosensors. Electrochim. Acta 53, 1811–1823 (2007)CrossRefGoogle Scholar
  31. 31.
    Tsang, S.C., Chen, Y.K., Harris, P.J.F., Green, M.L.H.: A simple chemical method of opening and filling carbon nanotubes. Nature 372, 159–162 (1994)CrossRefGoogle Scholar
  32. 32.
    Bard, A.J., Faulkner, L.R.: Electrochemical Methods Fundamentals and Applications, p. 222. Wiley, New York (1980)Google Scholar
  33. 33.
    Bond, A.M.: Modern Polarographic Methods in Analytical Chemistry, p. 27. Marcel Dekker, New York (1980)Google Scholar
  34. 34.
    Tong, L.H., Shen, B.J.: Physical Methods in Supramolecular Chemistry Research. Science Press, Beijing (2004)Google Scholar
  35. 35.
    Li, N.Q., Gao, X.X.: Polarographic catalytic wave study of vanadium-Ι. Chin. J. Anal. Chem. 1, 40–48 (1973)Google Scholar
  36. 36.
    Li, N.Q., Gao, X.X.: Polarographic catalytic wave study of vanadium-II. Chin. J. Anal. Chem. 2, 459–461 (1974)Google Scholar
  37. 37.
    Benesi, H.A., Hildebrand, J.H.: A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2703–2707 (1949)CrossRefGoogle Scholar
  38. 38.
    Qi, W.B., Qi, Z.H.: New Analytical Synergistic Agent. Hangzhou University Press, Hangzhou (1994)Google Scholar
  39. 39.
    Liu, Y., Li, B., You, C.C., Wada, T., Inoue, Y.: Molecular recognition studies on supramolecular systems. Molecular recognition of dyes by organoselenium-bridged bis(β-cyclodextrin)s. J. Org. Chem. 66, 225–232 (2001)CrossRefGoogle Scholar
  40. 40.
    Liu, Y., Chen, Y., Li, L., Huang, G., You, C.C., Zhang, H.Y., Wada, T., Inoue, Y.: Cooperative multiple recognition by novel calix[4]arene-tethered β-cyclodextrin and calix[4]arene-bridged bis(β-cyclodextrin). J. Org. Chem. 66, 7209–7215 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Research Center for Environmental Science and Engineering, Department of ChemistryShanxi UniversityTaiyuanChina
  2. 2.College of Chemistry and Chemical EngineeringShanxi Datong UniversityDatongChina

Personalised recommendations