Hydrogen bonded assemblies of 1,8-naphthyridine derivatives: discrete or polymeric structures in the solid state

Original Article

Abstract

A series of 1,8-naphthyridine derivatives, consist of a number of hydrogen bonding donor and acceptor sites, are found to exhibit interesting hydrogen bonded assemblies in the solid state. Placement of different types of functionalities around the 1,8-naphthyridine motif via simple synthetic methodologies can easily change the hydrogen bonding patterns involving naphthyridine as hydrogen bonding building block. Discrete or polymeric assemblies are observed while the substituents around the naphthyridine nucleus are varied. Water assisted dimeric structure is found in pyridine appended naphthyridine system and all the structures are determined by X-ray crystallographic analysis.

Graphical Abstract

A series of 1,8-naphthyridine derivatives, consist of a number of hydrogen bonding donor and acceptor sites, are found to exhibit interesting hydrogen bonded assemblies in the solid state. Placement of different types of functionalities around the 1,8-naphthyridine motif via simple synthetic methodologies can easily change the hydrogen bonding patterns involving naphthyridine as hydrogen bonding building block. Discrete or polymeric assemblies are observed while the substituents around the naphthyridine nucleus are varied. Water assisted dimeric structure is found in pyridine appended naphthyridine system and all the structures are determined by X-ray crystallographic analysis.

Keywords

Self-assembly Weak interaction Molecular crystals Naphthyridine Polymeric structure Water assisted dimer 

References

  1. 1.
    Moulton, B., Zaworotko, M.J.: From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. Chem. Rev. 101, 1629–1658 (2001)CrossRefGoogle Scholar
  2. 2.
    Desiraju, G.R.: Hydrogen bridges in crystal engineering: interactions without borders. Acc. Chem. Res. 35, 565–573 (2002)CrossRefGoogle Scholar
  3. 3.
    Hollingsworth, M.D.: Crystal engineering: from structure to function. Science 295, 2410–2413 (2002)Google Scholar
  4. 4.
    Braga, D.: Crystal engineering, where from? Where to? Chem. Commun. 2751–2754 (2003)Google Scholar
  5. 5.
    Braga, D., Branner, J., Champness, N.R.: New trends in crystal engineering. Cryst. Eng. Commun. 7, 1–19 (2005)Google Scholar
  6. 6.
    Tiekink, E.R.T., Vittal, J.J. (eds.): Frontiers in Crystal Engineering. Wiley, Chichester (2006)Google Scholar
  7. 7.
    Marjo, C.E., Bishop, R., Craig, D.C., Scudder, M.L.: Crystal engineering involving C–H···N weak hydrogen bonds: a diquinoxaline lattice inclusion host with a preference for poly chlorocarbon Guests. Eur. J. Org. Chem. 5, 863–873 (2001); and references cited thereinCrossRefGoogle Scholar
  8. 8.
    Lu, W., Zhang, L.-H., Ye, X.-S., Su, J., Yu, Z.: Molecular receptors for monosaccharides: di(pyridyl)naphthyridine and di(quinolyl)naphthyridine. Tetrahedron 62, 1806–1816 (2006)CrossRefGoogle Scholar
  9. 9.
    Ma, Y., Kolotuchin, S.V., Zimmerman, S.C.: Supramolecular polymer chemistry: self-assembling dendrimers using the DDA.AAD (GC-like) hydrogen bonding motif. J. Am. Chem. Soc. 124, 13757–13769 (2002)CrossRefGoogle Scholar
  10. 10.
    Goswami, S., Dey, S., Gallagher, J.F., Lough, A.J., Garcia-Granda, S., Torre-Fernandez, L., Alkorta, I., Elguero, J.: Tailor-made naphthyridines: self-assembling multiple hydrogen-bonded supramolecular architectures from dimer to helix. J. Mol. Struct. 846, 97–107 (2007)CrossRefGoogle Scholar
  11. 11.
    Tanase, T., Takenaka, H., Goto, E.: Dinuclear Rh(I) complex with 2,7-bis(diphenylphosphino)-1,8-naphthyridine: synthesis, structure, and dynamic property. J. Organomet. Chem. 692, 175–183 (2007)CrossRefGoogle Scholar
  12. 12.
    Goswami, S., Mukherjee, R.: Molecular recognition: a simple dinaphthyridine receptor for urea. Tetrahedron Lett. 38, 1619–1622 (1997)CrossRefGoogle Scholar
  13. 13.
    Herranz, F., Santa Maria, M.D., Claramunt, R.M.: Molecular recognition: improved binding of biotin derivatives with synthetic receptors. J. Org. Chem. 71, 2944–2951 (2006)CrossRefGoogle Scholar
  14. 14.
    Ghosh, K., Sen, T., Frohlich, R.: A naphthyridine-based receptor for sensing citric acid. Tetrahedron Lett. 48, 2935–2938 (2007)CrossRefGoogle Scholar
  15. 15.
    Newkome, G.R., Garbis, S.J., Majestic, V.K., Fronezek, F.R., Chiari, G.: Chemistry of heterocyclic compounds. 61. Synthesis and conformational studies of macrocycles possessing 1,8- or 1,5-naphthyridino subunits connected by carbon–oxygen bridges. J. Org. Chem. 46, 833–839 (1981)CrossRefGoogle Scholar
  16. 16.
    Corbin, P.S., Zimmerman, S.C., Thiessen, P.A., Hawryluk, N.A., Murray, T.Z.: Complexation-induced unfolding of heterocyclic ureas. Simple foldamers equilibrate with multiply hydrogen-bonded sheet like structures. J. Am. Chem. Soc. 123, 10475 (2001)CrossRefGoogle Scholar
  17. 17.
    COLLECT, program for collecting data on CCD area detectors. Nonius B.V. (1998)Google Scholar
  18. 18.
    Otwinowski, Z., Minor, W.: Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)CrossRefGoogle Scholar
  19. 19.
    Blessing, R.H.: An empirical correction for absorption anisotropy. Acta Cryst. A51, 33–37 (1995)Google Scholar
  20. 20.
    Blessing, R.H.: Outlier treatment in data merging. J. Appl. Cryst. 30, 421–426 (1997)CrossRefGoogle Scholar
  21. 21.
    Otwinowski, Z., Borek, D., Majewski, W., Minor, W.: Multiparametric scaling of diffraction intensities. Acta Cryst. A59, 228–234 (2003)Google Scholar
  22. 22.
    Sheldrick, G.M.: Phase annealing in SHELX-90: direct methods for larger structures. Acta Cryst. A46, 467–473 (1990)Google Scholar
  23. 23.
    Sheldrick, G.M.: A short history of SHELX. Acta Cryst. A64, 112–122 (2008)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Kumaresh Ghosh
    • 1
  • Tanushree Sen
    • 1
  • Roland Fröhlich
    • 2
  1. 1.Department of ChemistryUniversity of KalyaniKalyani, NadiaIndia
  2. 2.Organisch-Chemisches InstitutUniversität MünsterMünsterGermany

Personalised recommendations