Molecular brake systems controlled by light and heat

Review Article

Abstract

Machines at a molecular level are in perpetual Brownian motion even at an ambient temperature. One of the representative issues of researches on molecular machines is a development of technology, which can control Brownian motion. This review presents our efforts to achieve the first rationally designed molecular brake systems of threading/dethreading motions, a shuttling motion, and a rocking motion that work reversibly and quantitatively in response to external stimuli without producing any chemical wastes. These molecular brake systems were constructed from a dumbbell shaped secondary ammonium axle and a ring component having photo and thermally reactive moiety.

Keywords

Host–guest chemistry Molecular recognition Molecular brake Shuttling Molecular machine Molecular device 

References

  1. 1.
    Pedersen, C.J.: Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89, 2495–2496 (1967)CrossRefGoogle Scholar
  2. 2.
    Pedersen, C.J.: Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89, 7017–7036 (1967)CrossRefGoogle Scholar
  3. 3.
    Pedersen, C.J.: The discovery of crown ethers (noble lecture). Angew. Chem. Int. Ed. Engl. 27, 1021–1027 (1988)CrossRefGoogle Scholar
  4. 4.
    Pedersen, C.J.: The discovery of crown ethers. J. Incl. Phenom. 6, 337–350 (1988)CrossRefGoogle Scholar
  5. 5.
    Cram, D.J.: The design of molecular hosts, guests, and their complexes (nobel lecture). Angew. Chem. Int. Ed. Engl. 27, 1009–1020 (1988)CrossRefGoogle Scholar
  6. 6.
    Cram, D.J.: The design of molecular hosts, guests, and their complexes. J. Incl. Phenom. 6, 397–413 (1988)CrossRefGoogle Scholar
  7. 7.
    Lehn, J.M.: Supramolecular chemistry—scope and perspectives molecules, supermolecules, and molecular devices. Angew. Chem. Int. Ed. Engl. 27, 89–112 (1988)CrossRefGoogle Scholar
  8. 8.
    Lehn, J.M.: Supramolecular chemistry—scope and perspectives molecules, supermolecules, and molecular devices. J. Incl. Phenom. 6, 351–396 (1988)CrossRefGoogle Scholar
  9. 9.
    Lehn, J.M.: Supramolecular Chemistry—Concepts and Perspectives. VCH, Weinheim (1995)Google Scholar
  10. 10.
    Izatt, R.M., Bradshaw, J.S., Nielsen, S.A., Lamb, J.D., Christensen, J.J.: Thermodynamic and kinetic data for cation macrocycle interaction. Chem. Rev. 85, 271–339 (1985)CrossRefGoogle Scholar
  11. 11.
    Izatt, R.M., Pawlak, K., Bradshaw, J.S., Bruening, R.L.: Thermodynamic and kinetic data for macrocycle interaction with cations and anions. Chem. Rev. 91, 1721–2085 (1991)CrossRefGoogle Scholar
  12. 12.
    Izatt, R.M., Pawlak, K., Bradshaw, J.S., Bruening, R.L.: Thermodynamic and kinetic data for macrocycle interaction with cations, anions, and neutral molecules. Chem. Rev. 95, 2529–2586 (1995)CrossRefGoogle Scholar
  13. 13.
    Izatt, R.M., Bradshaw, J.S., Pawlak, K., Bruening, R.L., Tarbet, B.J.: Thermodynamic and kinetic data for macrocycle interaction with neutral molecules. Chem. Rev. 92, 1261–1354 (1992)CrossRefGoogle Scholar
  14. 14.
    Zhang, X.X., Bradshaw, J.S., Izatt, R.M.: Enantiomeric recognition of amine compounds by chiral macrocyclic receptors. Chem. Rev. 97, 3313–3361 (1997)CrossRefGoogle Scholar
  15. 15.
    Kaneda, T., Hirose, K., Misumi, S.: Chiral azophenolic acerands: color indicator to judge the absolute configuration of chiral amines. J. Am. Chem. Soc. 111, 742–743 (1989)CrossRefGoogle Scholar
  16. 16.
    Naemura, K., Mizo-Oku, T., Kamada, K., Hirose, K., Tobe, Y., Sawada, M., Takai, Y.: Preparation of homochiral crown ether containing (S)-1-(1-adamantyl)ethane-1, 2-diol as a chiral subunit and its enantioselective complexation with an organic ammonium cation. Tetrahedron Asymmetr. 5, 1549–1558 (1994)CrossRefGoogle Scholar
  17. 17.
    Naemura, K., Asada, M., Hirose, K., Tobe, Y.: Preparation and enantiomer recognition of chiral azophenolic crown ethers having three chiral barriers on each of the homotopic faces. Tetrahedron Asymmetr. 6, 1873–1876 (1995)CrossRefGoogle Scholar
  18. 18.
    Naemura, K., Takeuchi, S., Sawada, M., Ueno, K., Hirose, K., Tobe, Y., Kaneda, T., Sakata, Y.: Synthesis of azophenolic crown ethers of CS symmetry incorporating cis-1-phenylcyclohexane-1, 2-diol residues as a steric barrier and diastereotopic face selectivity in complexation of amines by their diastereotopic faces. J. Chem. Soc. Perkin Trans. 1, 1429–1435 (1995)CrossRefGoogle Scholar
  19. 19.
    Naemura, K., Takeuchi, S., Hirose, K., Tobe, Y., Kaneda, T., Sakata, Y.: Preparation and enantiomer recognition behaviour of azophenolic crown ethers containing cis-cyclohexane-1, 2-diol as the chiral centre. J. Chem. Soc. Perkin Trans. 1, 213–219 (1995)CrossRefGoogle Scholar
  20. 20.
    Naemura, K., Fuji, J., Ogasahara, K., Hirose, K., Tobe, Y.: Temperature dependent reversal of enantiomer selectivity in the complexation of optically active phenolic crown ethers with chiral amines. Chem. Commun., 2749–2750 (1996)Google Scholar
  21. 21.
    Naemura, K., Ueno, K., Takeuchi, S., Hirose, K., Tobe, Y., Kaneda, T., Sakata, Y.: Preparation and enantiomer recognition behaviour of azophenolic crown ethers containing cis-cyclohexane-1,2-diol as the chiral subunit and 2,4-dinitrophenylazophenol as the chromophore. J. Chem. Soc. Perkin Trans. 1, 383–388 (1996)CrossRefGoogle Scholar
  22. 22.
    Hirose, K., Fuji, J., Kamada, K., Tobe, Y., Naemura, K.: Temperature dependent inversion of enantiomer selectivity in the complexation of optically active azophenolic crown ethers containing alkyl substituents as chiral barriers with chiral amines. J. Chem. Soc. Perkin Trans. 2, 1649–1657 (1997)Google Scholar
  23. 23.
    Naemura, K., Nishikawa, Y., Fuji, J., Hirose, K., Tobe, Y.: Preparation of homochiral phenolic crown ethers containing para-substituted phenol moiety and chiral subunits derived from (S)-1-phenylethane-1, 2-diol: Their chiral recognition behaviour in complexation with neutral amines. Tetrahedron Asymmetr. 8, 873–882 (1997)CrossRefGoogle Scholar
  24. 24.
    Naemura, K., Ogasahara, K., Hirose, K., Tobe, Y.: Preparation of homochiral azophenolic crown ethers containing 1-phenylethane-1,2-diol and 2,4-dimethyl-3-oxapentane-1,5-diol as a chiral subunits: enantiomer recognition behaviour towards chiral 2-aminoethanol derivatives. Tetrahedron Asymmetr. 8, 19–22 (1997)CrossRefGoogle Scholar
  25. 25.
    Naemura, K., Wakebe, T., Hirose, K., Tobe, Y.: Preparation of homochiral phenolic crown ethers having chiral subunits derived from (1R,2S)-cis-1,2,3,4-tetrahydronaphthalene-1,2-diol: temperature-dependent enantiomer selectivity in complexation with neutral amines. Tetrahedron Asymmetr. 8, 2585–2595 (1997)CrossRefGoogle Scholar
  26. 26.
    Ogasahara, K., Hirose, K., Tobe, Y., Naemura, K.: Preparation of optically active azophenolic crown ethers containing 1-phenylethane-1,2-diol and 2,4-dimethyl-3-oxapentane-1,5-diol as a chiral subunits: temperature-dependent enantiomer selectivity in complexation with chiral amines. J. Chem. Soc. Perkin Trans. 1, 3227–3236 (1997)CrossRefGoogle Scholar
  27. 27.
    Naemura, K., Matsunaga, K., Fuji, J., Ogasahara, K., Nishikawa, Y., Hirose, K., Tobe, Y.: Temperature dependence of enantiomer selectivity in complexations of optically active phenolic crown ethers with chiral amines in solution. Anal. Sci. 14, 175–182 (1998)CrossRefGoogle Scholar
  28. 28.
    Naemura, K., Nishioka, K., Ogasahara, K., Nishikawa, Y., Hirose, K., Tobe, Y.: Preparation and temperature-dependent enantioselectivities of homochiral phenolic crown ethers having aryl chiral barriers: thermodynamic parameters for enantioselective complexation with chiral amines. Tetrahedron Asymmetr. 9, 563–574 (1998)CrossRefGoogle Scholar
  29. 29.
    Hirose, K., Ogasahara, K., Nishioka, K., Tobe, Y., Naemura, K.: Enantioselective complexation of phenolic crown ethers with chiral aminoethanol derivatives: effects of substituents of aromatic rings of hosts and guests on complexation. J. Chem. Soc. Perkin Trans. 2, 1984–1993 (2000)Google Scholar
  30. 30.
    Hirose, K., Fujiwara, A., Matsunaga, K., Aoki, N., Tobe, Y.: Chiral recognition of secondary amines by using chiral crown ether and podand. Tetrahedron Lett. 43, 8539–8542 (2002)CrossRefGoogle Scholar
  31. 31.
    Hirose, K., Fujiwara, A., Matsunaga, K., Aoki, N., Tobe, Y.: Preparation of phenolic chiral crown ethers and podands and their enantiomer recognition ability toward secondary amines. Tetrahedron Asymmetr. 14, 555–566 (2003)CrossRefGoogle Scholar
  32. 32.
    Wenzel, T.J., Freeman, B.E., Sek, D.C., Zopf, J.J., Nakamura, T., Jin, Y.Z., Hirose, K., Tobe, Y.: Chiral recognition in NMR spectroscopy using crown ethers and their ytterbium(iii) complexes. Anal. Bioanal. Chem. 378, 1536–1547 (2004)CrossRefGoogle Scholar
  33. 33.
    Hirose, K., Aksharanandana, P., Suzuki, M., Wada, K., Naemura, K., Tobe, Y.: Remarkable effect of subtle structural change of chiral pseudo-18-crown-6 on enantiomer-selectivity in complexation with chiral amino alcohols. Heterocycles 66, 405–431 (2005)CrossRefGoogle Scholar
  34. 34.
    Hirose, K., Goshima, Y., Wakebe, T., Tobe, Y., Naemura, K.: Supramolecular method for the determination of absolute configuration of chiral compounds: theoretical derivatization and a demonstration for phenolic crown ether—2-amino-1-ethanol system. Anal. Chem. 79, 6295–6302 (2007)CrossRefGoogle Scholar
  35. 35.
    Sawada, M., Okumura, Y., Shizuma, M., Takai, Y., Hidaka, Y., Yamada, H., Tanaka, T., Kaneda, T., Hirose, K., Misumi, S., Takahashi, S.: Enantioselective complexation of carbohydrate or crown ether hosts with organic ammonium ion guests detected by FAB mass spectrometry. J. Am. Chem. Soc. 115, 7381–7388 (1993)CrossRefGoogle Scholar
  36. 36.
    Sawada, M., Okumura, Y., Yamada, H., Takai, Y., Takahashi, S., Kaneda, T., Hirose, K., Misumi, S.: Cross-chiral examinations of molecular enantioselective recognition by fast atom bombardment mass spectrometry: host–guest complexations between chiral crown ethers and chiral organic ammonium ions. Org. Mass Spectrom. 28, 1525–1528 (1993)CrossRefGoogle Scholar
  37. 37.
    Sawada, M., Takai, Y., Yamada, H., Kaneda, T., Kamada, K., Mizooku, T., Hirose, K., Tobe, Y., Naemura, K.: Chiral recognition in molecular complexation for the crown ether-amino ester system. A facile FAB mass spectrometric approach. J. Chem. Soc. Chem. Commun., 2497–2498 (1994)Google Scholar
  38. 38.
    Sawada, M., Takai, Y., Yamada, H., Hirayama, S., Kaneda, T., Tanaka, T., Kamada, K., Mizooku, T., Takeuchi, S., Ueno, K., Hirose, K., Tobe, Y., Naemura, K.: Chiral recognition in host–guest complexation determined by the enantiomer-labeled guest method using fast atom bombardment mass spectrometry. J. Am. Chem. Soc. 117, 7726–7736 (1995)CrossRefGoogle Scholar
  39. 39.
    Sawada, M., Takai, Y., Kaneda, T., Arakawa, R., Okamoto, M., Doe, H., Matsuo, T., Naemura, K., Hirose, K., Tobe, Y.: Chiral molecular recognition in electrospray ionization mass spectrometry. Chem. Commun., 1735–1736 (1996)Google Scholar
  40. 40.
    Sawada, M., Takai, Y., Yamada, H., Nishida, J., Kaneda, T., Arakawa, R., Okamoto, M., Hirose, K., Tanaka, T., Naemura, K.: Chiral amino acid recognition detected by electrospray ionization (ESI) and fast atom bombardment (FAB) mass spectrometry (MS) coupled with the enantiomer labelled (EL) guest method. J. Chem. Soc. Perkin Trans. 2, 701–710 (1998)Google Scholar
  41. 41.
    Sawada, M., Hagita, K., Imamura, H., Tabuchi, H., Yodoya, S., Umeda, M., Takai, Y., Yamada, H., Yamaoka, H., Hirose, K., Tobe, Y., Tanaka, T., Takahashi, S.: Chiral recognition ability of crown ethers toward organic amine compounds: FAB mass spectrometry coupled with the enantiomer-labeled guest method. J. Mass Spectrom. Soc. Jpn. 48, 323–332 (2000)Google Scholar
  42. 42.
    Sawada, M., Takai, Y., Imamura, H., Yamada, H., Takahashi, S., Yamaoka, H., Hirose, K., Tobe, Y., Tanaka, J.: Chiral recognizable host–guest interactions detected by fast-atom bombardment mass spectrometry: application to the enantiomeric excess determination of primary amines. Eur. J. Mass Spectrom. 7, 447–459 (2001)CrossRefGoogle Scholar
  43. 43.
    Sawada, M., Takai, Y., Yamada, H., Yoshikawa, M., Arakawa, R., Tabuchi, H., Takada, M., Tanaka, J., Shizuma, M., Yamaoka, H., Hirose, K., Fukuda, K., Tobe, Y.: Depression of the apparent chiral recognition ability obtained in the host–guest complexation systems by electrospray and nano-electrospray ionization mass spectrometry. Eur. J. Mass Spectrom. 10, 27–37 (2004)CrossRefGoogle Scholar
  44. 44.
    Nishioka, R., Ueshige, T., Nakamura, T., Hirose, K., Tobe, Y.: Preparation and evaluation of novel chiral stationary phases chemically bonded with chiral pseudo crown ether. Chromatography 21, 294–295 (2000)Google Scholar
  45. 45.
    Ueshige, T., Nishioka, R., Nakamura, T., Hirose, K., Tobe, Y.: Enantiomeric separations of stimulant materials using chiral stationary phase bonded with pseudo crown ether. Chromatography 21, 368–369 (2000)Google Scholar
  46. 46.
    Hirose, K., Nakamura, T., Nishioka, R., Ueshige, T., Tobe, Y.: Preparation and evaluation of novel chiral stationary phases covalently bound with chiral pseudo-18-crown-6 ethers. Tetrahedron Lett. 44, 1549–1551 (2003)CrossRefGoogle Scholar
  47. 47.
    Hirose, K., Jin, Y.Z., Nakamura, T., Nishioka, R., Ueshige, T., Tobe, Y.: Chiral stationary phase covalently bound with a chiral pseudo-18-crown-6 ether for enantiomer separation of amino compounds using a normal mobile phase. Chirality 17, 142–148 (2005)CrossRefGoogle Scholar
  48. 48.
    Hirose, K., Jin, Y.Z., Nakamura, T., Nishioka, R., Ueshige, T., Tobe, Y.: Preparation and evaluation of a chiral stationary phase covalently bound with chiral pseudo-18-crown-6 ether having 1-phenyl-1,2-cyclohexanediol as a chiral unit. J. Chromatogr. A 1078, 35–41 (2005)CrossRefGoogle Scholar
  49. 49.
    Jin, Y.Z., Hirose, K., Nakamura, T., Nishioka, R., Ueshige, T., Tobe, Y.: Preparation and evaluation of a chiral stationary phase covalently bound with a chiral pseudo-18-crown-6 ether having a phenolic hydroxy group for enantiomer separation of amino compounds. J. Chromatogr. A 1129, 201–207 (2006)CrossRefGoogle Scholar
  50. 50.
    Chun, K., Kim, T.H., Lee, O.-S., Hirose, K., Chung, T.D., Chung, D.S., Kim, H.: Structure-selective recognition by voltammetry: enantiomeric determination of amines using azophenolic crowns in aprotic solvent. Anal. Chem. 78, 7597–7600 (2006)CrossRefGoogle Scholar
  51. 51.
    Nakashima, K., Nagaoka, Y., Nakatsuji, S.I., Kaneda, T., Tanigawa, I., Hirose, K., Misumi, S., Akiyama, S.: Fluorescence reactions of “crowned” benzothiazolylphenols with alkali and alkaline earth metal ions and their analytical applications. Bull. Chem. Soc. Jpn. 60, 3219–3223 (1987)CrossRefGoogle Scholar
  52. 52.
    Takagi, M., Nakamura, H.: Analytical application of functionalized crown ether-metal complexes. J. Coord. Chem. 15, 53–82 (1986)CrossRefGoogle Scholar
  53. 53.
    Desilva, A.P., Gunaratne, H.Q.N., Gunnlaugsson, T., Huxley, A.J.M., Mccoy, C.P., Rademacher, J.T., Rice, T.E.: Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97, 1515–1566 (1997)CrossRefGoogle Scholar
  54. 54.
    Hisamoto, H.: Ion-selective optodes: Current developments and future prospects. TrAC Trends Anal. Chem. 18, 513–524 (1999)CrossRefGoogle Scholar
  55. 55.
    Yamauchi, A., Hayashita, T., Nishizawa, S., Watanabe, M., Teramae, N.: Benzo-15-crown-5 fluoroionophore/gamma-cyclodextrin complex with remarkably high potassium ion sensitivity and selectivity in water. J. Am. Chem. Soc. 121, 2319–2320 (1999)CrossRefGoogle Scholar
  56. 56.
    Stradiotto, N.R., Yamanaka, H., Zanoni, M.V.B.: Electrochemical sensors: a powerful tool in analytical chemistry. J. Braz. Chem. Soc. 14, 159–173 (2003)CrossRefGoogle Scholar
  57. 57.
    Hayashita, T., Yamauchi, A., Tong, A.J., Lee, J.C., Smith, B.D., Teramae, N.: Design of supramolecular cyclodextrin complex sensors for ion and molecule recognition in water. J. Incl. Phenom. Macrocycl. Chem. 50, 87–94 (2004)Google Scholar
  58. 58.
    Uchida, S., Komatsu, Y., Satoh, H., Yajima, S., Kimura, K., Tobe, Y., Sasaki, S., Mizuno, M., Watanabe, Y., Hirose, K.: Properties of dendritic and cyclic thiourea derivatives as neutral carriers for anion sensor. Bunseki Kagaku 53, 943–952 (2004)CrossRefGoogle Scholar
  59. 59.
    Hisaki, I., Sasaki, S.I., Hirose, K., Tobe, Y.: Synthesis and anion-selective complexation of homobenzylic, tripodal thiourea derivatives. Eur. J. Org. Chem., 607–615 (2007)Google Scholar
  60. 60.
    Faridbod, F., Ganjali, M.R., Dinarvand, R., Norouzi, P., Riahi, S.: Schiff’s bases and crown ethers as supramolecular sensing materials in the construction of potentiometric membrane sensors. Sensors 8, 1645–1703 (2008)CrossRefGoogle Scholar
  61. 61.
    Tsubaki, K.: Colorimetric recognition using functional phenolphthalein derivatives. J. Incl. Phenom. Macrocycl. Chem. 61, 217–225 (2008)CrossRefGoogle Scholar
  62. 62.
    Ozawa, R., Hayashita, T., Matsui, T., Nakayama, C., Yamauchi, A., Suzuki, I.: Effects of cyclodextrins and saccharides on dual fluorescence of N,N-dimethyl-4-aminophenylboronic acid in water. J. Incl. Phenom. Macrocycl. Chem. 60, 253–261 (2008)CrossRefGoogle Scholar
  63. 63.
    Sogah, G.D.Y., Cram, D.J.: Total chromatographic optical resolutions of alpha-amino acid and ester salts through chiral recognition by a host covalently bound to polystyrene resin. J. Am. Chem. Soc. 98, 3038–3041 (1976)CrossRefGoogle Scholar
  64. 64.
    Sogah, G.D.Y., Cram, D.J.: Host–guest complexation.14. Host covalently bound to polystyrene resin for chromatographic resolution of enantiomers of amino acid and ester salts. J. Am. Chem. Soc. 101, 3035–3042 (1979)CrossRefGoogle Scholar
  65. 65.
    Sousa, L.R., Sogah, G.D.Y., Hoffman, D.H., Cram, D.J.: Host–guest complexation. 12. Total optical resolution of amine and amino ester salts by chromatography. J. Am. Chem. Soc. 100, 4569–4576 (1978)CrossRefGoogle Scholar
  66. 66.
    Machida, Y., Nishi, H., Nakamura, K., Nakai, H., Sato, T.: Enantiomeric separation of diols and beta-amino alcohols by chiral stationary phase derived from (R,R)-tartramide. J. Chromatogr. A 757, 73–79 (1997)CrossRefGoogle Scholar
  67. 67.
    Machida, Y., Nishi, H., Nakamura, K., Nakai, H., Sato, T.: Enantiomer separation of amino compounds by a novel chiral stationary phase derived from crown ether. J. Chromatogr. A 805, 85–92 (1998)CrossRefGoogle Scholar
  68. 68.
    Machida, Y., Nishi, H., Nakamura, K.: Separation of the enantiomers of amino and amide compounds on novel chiral stationary phases derived from a crown ether. Chromatographia 49, 621–627 (1999)CrossRefGoogle Scholar
  69. 69.
    Hyun, M.H., Jin, J.S., Lee, W.J.: Liquid chromatographic resolution of racemic amino acids and their derivatives on a new chiral stationary phase based on crown ether. J. Chromatogr. A 822, 155–161 (1998)CrossRefGoogle Scholar
  70. 70.
    Hyun, M.H., Jin, J.S., Koo, H.J., Lee, W.J.: Liquid chromatographic resolution of racemic amines and amino alcohols on a chiral stationary phase derived from crown ether. J. Chromatogr. A 837, 75–82 (1999)CrossRefGoogle Scholar
  71. 71.
    Maier, N.M., Franco, P., Lindner, W.: Separation of enantiomers: needs, challenges, perspectives. J. Chromatogr. A 906, 3–33 (2001)CrossRefGoogle Scholar
  72. 72.
    Hyun, M.H.: Characterization of liquid chromatographic chiral separation on chiral crown ether stationary phases. J. Sep. Sci. 26, 242–250 (2003)CrossRefGoogle Scholar
  73. 73.
    Cram, D.J., Cram, J.M.: Design of complexes between synthetic hosts and organic guests. Acc. Chem. Res. 11, 8–14 (1978)CrossRefGoogle Scholar
  74. 74.
    Cram, D.J., Trueblood, K.N.: Concept, structure, and binding in complexation. Top. Curr. Chem. 98, 43–106 (1981)CrossRefGoogle Scholar
  75. 75.
    Izake, E.L.: Chiral discrimination and enantioselective analysis of drugs: an overview. J. Pharm. Sci. 96, 1659–1676 (2007)CrossRefGoogle Scholar
  76. 76.
    Kubo, Y., Maeda, S., Tokita, S., Kubo, M.: Colorimetric chiral recognition by a molecular sensor. Nature 382, 522–524 (1996)CrossRefGoogle Scholar
  77. 77.
    Van Delden, R.A., Feringa, B.L.: Color indicators of molecular chirality based on doped liquid crystals. Angew. Chem. Int. Ed. 40, 3198–3200 (2001)CrossRefGoogle Scholar
  78. 78.
    Van Delden, R.A., Feringa, B.L.: Colour indicator for enantiomeric excess and assignment of the configuration of the major enantiomer of an amino acid ester. Chem. Commun., 174–175 (2002)Google Scholar
  79. 79.
    Dietrichbuchecker, C., Sauvage, J.P.: Templated synthesis of interlocked macrocyclic ligands, the catenands. Preparation and characterization of the prototypical bis-30 membered ring system. Tetrahedron 46, 503–512 (1990)CrossRefGoogle Scholar
  80. 80.
    Sauvage, J.P.: Interlacing molecular threads on transition-metals—catenands, catenates, and knots. Acc. Chem. Res. 23, 319–327 (1990)CrossRefGoogle Scholar
  81. 81.
    Sauvage, J.P.: Transition metal-containing rotaxanes and catenanes in motion: toward molecular machines and motors. Acc. Chem. Res. 31, 611–619 (1998)CrossRefGoogle Scholar
  82. 82.
    Dietrichbuchecker, C.O., Sauvage, J.P.: A synthetic molecular trefoil knot. Angew. Chem. Int. Ed. Engl. 28, 189–192 (1989)CrossRefGoogle Scholar
  83. 83.
    Ogino, H.: Relatively high-yield syntheses of rotaxanes—syntheses and properties of compounds consisting of cyclodextrins threaded by alpha, omega-diaminoalkanes coordinated to cobalt(iii) complexes. J. Am. Chem. Soc. 103, 1303–1304 (1981)CrossRefGoogle Scholar
  84. 84.
    Kolchinski, A.G., Busch, D.H., Alcock, N.W.: Gaining control over molecular threading: benefits of second coordination sites and aqueous-organic interfaces in rotaxane synthesis. J. Chem. Soc. Chem. Commun., 1289–1291 (1995)Google Scholar
  85. 85.
    Simonsen, K.B., Becher, J.: Tetrathiafulvalene thiolates: important synthetic building blocks for macrocyclic and supramolecular chemistry. Synlett 11, 1211–1220 (1997)CrossRefGoogle Scholar
  86. 86.
    Kawasaki, H., Kihara, N., Takata, T.: High yielding and practical synthesis of rotaxanes by acylative end-capping catalyzed by tributylphosphine. Chem. Lett., 1015–1016 (1999)Google Scholar
  87. 87.
    Zehnder, D.W., Smithrud, D.B.: Facile synthesis of rotaxanes through condensation reactions of dcc-2 rotaxanes. Org. Lett. 3, 2485–2487 (2001)CrossRefGoogle Scholar
  88. 88.
    Furusho, Y., Rajkumar, G.A., Oku, T., Takata, T.: Synthesis of 2 rotaxanes by tritylative endcapping of in situ formed pseudorotaxanes having thiol or hydroxyl functionality on the axle termini. Tetrahedron 58, 6609–6613 (2002)CrossRefGoogle Scholar
  89. 89.
    Schalley, C.A., Weilandt, T., Bruggemann, J., Vogtle, F.: Hydrogen-bond-mediated template synthesis of rotaxanes, catenanes, and knotanes. Templates Chem I 248, 141–200 (2004)Google Scholar
  90. 90.
    Yoon, I., Narita, M., Shimizu, T., Asakawa, M.: Threading-followed-by-shrinking protocol for the synthesis of a [2] rotaxane incorporating a pd(ii)-salophen moiety. J. Am. Chem. Soc. 126, 16740–16741 (2004)CrossRefGoogle Scholar
  91. 91.
    Arico, F., Badjic, J.D., Cantrill, S.J., Flood, A.H., Leung, K.C.F., Liu, Y., Stoddart, J.F.: Templated synthesis of interlocked molecules. Templates Chem II. 203–259 (2005)Google Scholar
  92. 92.
    Miljanic, O.S., Dichtel, W.R., Aprahamian, I., Rohde, R.D., Agnew, H.D., Heath, J.R., Stoddart, J.F.: Rotaxanes and catenanes by click chemistry. QSAR Comb. Sci. 26, 1165–1174 (2007)CrossRefGoogle Scholar
  93. 93.
    Narita, M., Yoon, I., Aoyagi, M., Goto, M., Shimizu, T., Asakawa, M.: Transition metal(ii)-salen and -salophen macrocyclic complexes for rotaxane formation: syntheses and crystal structures. Eur. J. Inorg. Chem., 4229–4237 (2007)Google Scholar
  94. 94.
    Nakazono, K., Oku, T., Takata, T.: Synthesis of rotaxanes consisting of crown ether wheel and sec-ammonium axle under basic condition. Tetrahedron Lett. 48, 3409–3411 (2007)CrossRefGoogle Scholar
  95. 95.
    Haussmann, P.C., Stoddart, J.F.: Synthesizing interlocked molecules dynamically. Chem. Rec. 9, 136–154 (2009)CrossRefGoogle Scholar
  96. 96.
    Harrison, I.T., Harrison, S.: Synthesis of a stable complex of a macrocycle and a threaded chain. J. Am. Chem. Soc. 89, 5723–5724 (1967)CrossRefGoogle Scholar
  97. 97.
    Schill, G., Zollenko, H.: Rotaxane compounds. 1. Liebigs Ann. Chem. 721, 53–74 (1969)CrossRefGoogle Scholar
  98. 98.
    Schill, G., Henschel, R.: Rotaxane compounds. 2. A diansa compound of 5-amino-6-methoxy-4.7-dimethylbenzodioxole as a model of catenanes and rotaxanes. Liebigs Ann. Chem. 731, 113–119 (1970)CrossRefGoogle Scholar
  99. 99.
    Hiratani, K., Suga, J., Nagawa, Y., Houjou, H., Tokuhisa, H., Numata, M., Watanabe, K.: A new synthetic method for rotaxanes via tandem claisen rearrangement, diesterification, and aminolysis. Tetrahedron Lett. 43, 5747–5750 (2002)CrossRefGoogle Scholar
  100. 100.
    Hiratani, K., Kaneyama, M., Nagawa, Y., Koyama, E., Kanesato, M.: Synthesis of [1] rotaxane via covalent bond formation and its unique fluorescent response by energy transfer in the presence of lithium ion. J. Am. Chem. Soc. 126, 13568–13569 (2004)CrossRefGoogle Scholar
  101. 101.
    Kameta, N., Hiratani, K., Nagawa, Y.: A novel synthesis of chiral rotaxanes via covalent bond formation. Chem. Commun., 466–467 (2004)Google Scholar
  102. 102.
    Nagawa, Y., Suga, J., Hiratani, K., Koyama, E., Kanesato, M.: 3 rotaxane synthesized via covalent bond formation can recognize cations forming a sandwich structure. Chem. Commun., 749–751 (2005)Google Scholar
  103. 103.
    Hirose, K., Nishihara, K., Harada, N., Nakamura, Y., Masuda, D., Araki, M., Tobe, Y.: Highly selective and high-yielding rotaxane synthesis via aminolysis of prerotaxanes consisting of a ring component and a stopper unit. Org. Lett. 9, 2969–2972 (2007)CrossRefGoogle Scholar
  104. 104.
    Kay, E.R., Leigh, D.A., Zerbetto, F.: Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007)CrossRefGoogle Scholar
  105. 105.
    Anelli, P.L., Spencer, N., Stoddart, J.F.: A molecular shuttle. J. Am. Chem. Soc. 113, 5131–5133 (1991)CrossRefGoogle Scholar
  106. 106.
    Collier, C.P., Wong, E.W., Belohradsky, M., Raymo, F.M., Stoddart, J.F., Kuekes, P.J., Williams, R.S., Heath, J.R.: Electronically configurable molecular-based logic gates. Science 285, 391–394 (1999)CrossRefGoogle Scholar
  107. 107.
    Wong, E.W., Collier, C.P., Belohradsky, M., Raymo, F.M., Stoddart, J.F., Heath, J.R.: Fabrication and transport properties of single-molecule-thick electrochemical junctions. J. Am. Chem. Soc. 122, 5831–5840 (2000)CrossRefGoogle Scholar
  108. 108.
    Pease, A.R., Jeppesen, J.O., Stoddart, J.F., Luo, Y., Collier, C.P., Heath, J.R.: Switching devices based on interlocked molecules. Acc. Chem. Res. 34, 433–444 (2001)CrossRefGoogle Scholar
  109. 109.
    Collier, C.P., Mattersteig, G., Wong, E.W., Luo, Y., Beverly, K., Sampaio, J., Raymo, F.M., Stoddart, J.F., Heath, J.R.: A [2] catenane-based solid state electronically reconfigurable switch. Science 289, 1172–1175 (2000)CrossRefGoogle Scholar
  110. 110.
    Green, J.E., Wook Choi, J., Boukai, A., Bunimovich, Y., Johnston-Halperin, E., Deionno, E., Luo, Y., Sheriff, B.A., Xu, K., Shik Shin, Y., Tseng, H.R., Stoddart, J.F., Heath, J.R.: A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 445, 414–417 (2007)CrossRefGoogle Scholar
  111. 111.
    Balzani, V., Venturi, M., Credi, A.: Molecular Devices and Machines—A Journey into the Nanoworld. Wiley-VCH, Weinheim (2003)CrossRefGoogle Scholar
  112. 112.
    Balzani, V., Credi, A., Venturi, M.: Molecular Devices and Machines-Concepts and Perspectives for the Nanoworld. Wiley-VCH, Weinheim (2008)Google Scholar
  113. 113.
  114. 114.
    Kelly, T.R., Bowyer, M.C., Bhaskar, K.V., Bebbington, D., Garcia, A., Lang, F.R., Kim, M.H., Jette, M.P.: A molecular brake. J. Am. Chem. Soc. 116, 3657–3658 (1994)CrossRefGoogle Scholar
  115. 115.
    Lane, A.S., Leigh, D.A., Murphy, A.: Peptide-based molecular shuttles. J. Am. Chem. Soc. 119, 11092–11093 (1997)CrossRefGoogle Scholar
  116. 116.
    Bermudez, V., Capron, N., Gase, T., Gatti, F.G., Kajzar, F., Leigh, D.A., Zerbetto, F., Zhang, S.: Influencing intramolecular motion with an alternating electric field. Nature 406, 608–611 (2000)CrossRefGoogle Scholar
  117. 117.
    Ghosh, P., Federwisch, G., Kogej, M., Schalley, C.A., Haase, D., Saak, W., Lützen, A., Gschwind, R.M.: Controlling the rate of shuttling motions in [2] rotaxanes by electrostatic interactions: a cation as solvent-tunable brake. Org. Biomol. Chem. 3, 2691–2700 (2005)CrossRefGoogle Scholar
  118. 118.
    Coskun, A., Friedman, D.C., Li, H., Patel, K., Khatib, H.A., Stoddart, J.F.: A light-gated STOP-GO molecular shuttle. J. Am. Chem. Soc. 131, 2493–2495 (2009)CrossRefGoogle Scholar
  119. 119.
    Chatterjee, M.N., Kay, E.R., Leigh, D.A.: Beyond switches: ratcheting a particle energetically uphill with a compartmentalized molecular machine. J. Am. Chem. Soc. 128, 4058–4073 (2006)CrossRefGoogle Scholar
  120. 120.
    Jiang, L., Okano, J., Orita, A., Otera, J.: Intermittent molecular shuttle as a binary switch. Angew. Chem. Int. Ed. 43, 2121–2124 (2004)CrossRefGoogle Scholar
  121. 121.
    Chen, N.C., Lai, C.C., Liu, Y.H., Peng, S.M., Chiu, S.H.: Parking and restarting a molecular shuttle in situ. Chem. Eur. J. 14, 2904–2908 (2008)CrossRefGoogle Scholar
  122. 122.
    Yang, J.S., Huang, Y.T., Ho, J.H., Sun, W.T., Huang, H.H., Lin, Y.C., Huang, S.J., Huang, S.L., Lu, H.F., Chao, I.: A pentiptycene-derived light-driven molecular brake. Org. Lett. 10, 2279–2282 (2008)CrossRefGoogle Scholar
  123. 123.
    Hirose, K., Shiba, Y., Ishibashi, K., Doi, Y., Tobe, Y.: An anthracene-based photochromic macrocycle as a key ring component to switch a frequency of threading motion. Chem. Eur. J. 14, 981–986 (2008)CrossRefGoogle Scholar
  124. 124.
    Hirose, K., Shiba, Y., Ishibashi, K., Doi, Y., Tobe, Y.: A shuttling molecular machine with reversible brake function. Chem. Eur. J. 14, 3427–3433 (2008)CrossRefGoogle Scholar
  125. 125.
    Hirose, K., Ishibashi, K., Shiba, Y., Doi, Y., Tobe, Y.: Control of rocking mobility of rotaxanes by size change of stimulus-responsive ring components. Chem. Lett. 36, 810–811 (2007)CrossRefGoogle Scholar
  126. 126.
    Hirose, K., Ishibashi, K., Shiba, Y., Doi, Y., Tobe, Y.: Highly effective and reversible control of rocking rates of rotaxanes by changing size of stimulus-responsive ring components. Chem. Eur. J. 14, 5803–5811 (2008)CrossRefGoogle Scholar
  127. 127.
    Definition of pseudorotaxanes is inclusion complexes in which a thread-like molecule is encircled by one or more ring-like molecules in such a way that the two ends of the thread are projected away from the center of the ring. In a rotaxane, the two ends of the thread are terminated by bulky groups which do not allow the passage of the ring, thus, the two (or more) components are mutually interlocked. The prefix pseudo denotes that in a pseudorotaxane the two components are not interlocked, but instead are free to dissociate because the end groups are small enough to allow passage of the ringGoogle Scholar
  128. 128.
    Becker, H.D.: Unimolecular photochemistry of anthracenes. Chem. Rev. 93, 145–172 (1993)CrossRefGoogle Scholar
  129. 129.
    Ashton, P.R., Campbell, P.J., Chrystal, E.J.T., Glink, P.T., Menzer, S., Philp, D., Spencer, N., Stoddart, J.F., Tasker, P.A., Williams, D.J.: Dialkylammonium ion/crown ether complexes: the forerunners of a new family of interlocked molecules. Angew. Chem. Int. Ed. Engl. 34, 1865–1869 (1995)CrossRefGoogle Scholar
  130. 130.
    Glink, P.T., Schiavo, C., Stoddart, J.F., Williams, D.J.: The genesis of a new range of interlocked molecules. Chem. Commun., 1483–1490 (1996)Google Scholar
  131. 131.
    Ashton, P.R., Chrystal, E.J.T., Glink, P.T., Menzer, S., Schiavo, C., Spencer, N., Stoddart, J.F., Tasker, P.A., White, A.J.P., Williams, D.J.: Pseudorotaxanes formed between secondary dialkylammonium salts and crown ethers. Chem. Eur. J. 2, 709–728 (1996)CrossRefGoogle Scholar
  132. 132.
    Bouas-Laurent, H., Castellan, A., Desvergne, J.P.: From anthracene photodimerization to jaw photochromic materials and photocrowns. Pure Appl. Chem. 52, 2633–2648 (1980)CrossRefGoogle Scholar
  133. 133.
    Moriwaki, F., Ueno, A., Osa, T., Hamada, F., Murai, K.: Photochemical conversion from flexible host to rigid host of a doubly capped γ-cyclodextrin. Chem. Lett. 15, 1865–1868 (1986)CrossRefGoogle Scholar
  134. 134.
    Deng, G., Sakaki, T., Kawahara, Y., Shinkai, S.: Tunable chemical sensors: light-switched ion selective electrodes on the basis of a photoresponsive calix [4] arene. Supramol. Chem. 2, 71–76 (1993)CrossRefGoogle Scholar
  135. 135.
    Tucker, J.H.R., Bouas-Laurent, H., Marsau, P., Riley, S.W., Desvergne, J.P.: A novel crown ether-cryptand photoswitch. Chem. Commun., 1165–1166 (1997)Google Scholar
  136. 136.
    Yamashita, I., Fujii, M., Kaneda, T., Misumi, S.: Synthetic macrocyclic ligands. 2. Synthesis of a photochromic crown ether. Tetrahedron Lett. 21, 541–544 (1980)CrossRefGoogle Scholar
  137. 137.
    Desvergne, J.P., Lauret, J., Bouas-Laurent, H., Marsau, P., Lahrahar, N., Andrianatoandro, H., Cotrait, M.: Synthesis, X-ray structure, spectroscopic and cation complexation studies of macrocyclic ligands incorporating the 9, 9′-(ethane-1,2-diyl)bis(anthracene) photoactive subunit. Recl. Trav. Chim. Pays-Bas 114, 504–513 (1995)CrossRefGoogle Scholar
  138. 138.
    Becker, H.D., Sanchez, D., Arvidsson, A.: Reductions with diphenylhydroxymethyl radicals. Synthesis of dianthrylethanes and dianthrylethylenes. J. Org. Chem. 44, 4247–4251 (1979)CrossRefGoogle Scholar
  139. 139.
    Matthew, J.C., Fyfe, M.C.T., Stoddart, J.F.: Molecular shuttles by the protecting group approach. J. Org. Chem. 65, 1937–1946 (2000)CrossRefGoogle Scholar
  140. 140.
    To avoid the decomposition of 1, the solvent for the irradiation with high pressure mercury lamp was limited. For this reaction THF-d 8 and toluene-d 8 were chosen as suitable polar and less polar solventsGoogle Scholar
  141. 141.
    The temperature for the VT-NMR measurement was limited because the cycloreversion of the closed-form rotaxane 7c started to occur at higher temperatures during the measurementGoogle Scholar
  142. 142.
    Bender, H.L., Farnham, A.G., Guyer, J.W., Apal, P.N., Gibb Jr, T.B.: Ind. Eng. Chem. 44, 1619–1623 (1952)CrossRefGoogle Scholar
  143. 143.
    Arnett, E.M., Wu, C.Y.: Stereoelectronic effects on organic bases. 2. Base strengths of the phenolic ethers. J. Am. Chem. Soc. 82, 5660–5665 (1960)CrossRefGoogle Scholar
  144. 144.
    Hirose, K.: A practical guide for the determination of binding constants. J. Incl. Phenom. Macrocycl. Chem. 39, 193–209 (2001)CrossRefGoogle Scholar
  145. 145.
    The basicities of the phenyl alkyl ethers are affected strongly by the alkyl group due to both inductive and stereoelectronic effectsGoogle Scholar
  146. 146.
    Line-shape analyses were carried out using (a) P. H. M. Budzelaar, gNMR, Program for simulation of one-dimensional NMR spectra, Adept Scientific plc, Letchworth (United Kingdom), 1999; and a spreadsheet program that we made for determination of the rocking rates on (b) Microsoft Excel 2002, Microsoft Corporation, Tokyo (Japan) (2001)Google Scholar
  147. 147.
    One of the signals of Hk which appeared at higher field was irradiated at 303 K. However, no change in the signal intensity of the other Hk signal was observed, suggesting that the relaxation time T1 of Hk is longer than the life time of the conformation. T1 was determined by the null point methodGoogle Scholar
  148. 148.
    Aviram, A., Ratner, M.A.: Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974)CrossRefGoogle Scholar
  149. 149.
    De Silva, A.P., Gunaratne, H.Q.N., Mccoy, C.P.: A molecular photoionic and gate based on fluorescent signalling. Nature 364, 42–44 (1993)CrossRefGoogle Scholar
  150. 150.
    Zheng, X., Mulcahy, M.E., Horinek, D., Galeotti, F., Magnera, T.F., Michl, J.: Dipolar and nonpolar altitudinal molecular rotors mounted on an Au(111) surface. J. Am. Chem. Soc. 126, 4540–4542 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Division of Frontier Materials Science, Graduate School of Engineering ScienceOsaka UniversityToyonakaJapan

Personalised recommendations