Thermodynamic study of functionalized calix[n]arene and resorcinol[n]arene monolayers spreaded at an aqueous pendant drop

  • Paula V. Messina
  • Olga Pieroni
  • Bruno Vuano
  • Juan Manuel Ruso
  • Gerardo Prieto
  • Félix Sarmiento
Original Article

Abstract

The behavior of insoluble calix[n]arene and resorcinol[n]arene derivatives monolayers were studied through the use of a constant surface Langmuir balance based on Axisymmetric Drop Shape Analysis (ADSA). In each case, a stable monolayer was obtained and different transitions (induced for lateral compression) could be identified. Thermodynamic parameters were computed through two dimensional Clausius–Clayperon equations and used to valuate the monolayer stability. A noticeable reduction of thermodynamic parameters occurred at highly tested temperatures (328 and 338 K) for those compounds that had hydrocarbon tails or benzene rings attached to one side of macrocyclic rim. Such fact was related to a monolayer rearrangement where the macrocyclic ring changed from a parallel to a perpendicular orientation. In this orientation the hydrophobic interactions between hydrocarbon chains and benzene rings were maximized. At highly temperature, where vigorous molecular motion existed, those interactions were superior to the stabilization effect through hydrogen bond.

Keywords

Langmuir monolayers Calix[n]arenes Resorcinol[n]arenes ADSA Conformational changes Thermodynamic 

References

  1. 1.
    Gutsche, C.D.: Calixarenes revisited. In: Stoddart, J.F. (ed.) Monographs in Supramolecular Chemistry. The Royal Society of Chemistry; Cambridge, England (1998)Google Scholar
  2. 2.
    Asfari, Z., Böhmer, V., Harrowfield, J.: Calixarenes 2001. In: Vincent, J. (ed.) Klumer Academic Publishers, Dordrecht, The Netherlands, (2001)Google Scholar
  3. 3.
    Houmadi, S., Coquiére, D., Legrand, L., Fauré, M.C., Goldmann, M., Reinaud, O., Rémita, S.: Architecture-CONTROLled “SMART” calix[6]arene self-assemblies in aqueous solution. Langmuir 23(9), 4849–4855 (2007)CrossRefGoogle Scholar
  4. 4.
    Coleman, A.W., Jebors, S., Shahgaldian, P., Ananchenko, G.S., Ripmeesterm J.A.: para-Acylcalix[n]arenes: from molecular to macroscopic assemblies. Chem. Commun. 2291–2303 (2008). [References therein]Google Scholar
  5. 5.
    Zigamshin, M.A., Yakimoda, L.S., Khayarov, K.R., Gorbatchuk, V.V., Vysotsky, M.O., Boehmer, V.: Guest exchange in dimeric capsules of a tetraurea calix[4]arene in the solid state. Chem. Comun. 3897–3899 (2006)Google Scholar
  6. 6.
    Makha, M., Raston, C.L., Sobolev, A.N., White, A.H.: Molecular capsules based on p-sulfonatocalix[6]arene shrouding two tetraphenylphosphonium cations. Chem. Commun. 1962–1964 (2005)Google Scholar
  7. 7.
    Drljaca, A., Hardie, M.J., Raston, C.L., Webb, H.R., Jonson, J.A.: Lanthanum(III) capture of 18-crown-6 in the cavity of p-sulfonatocalix[4]arene. Chem. Commun. 1135–1136 (1999)Google Scholar
  8. 8.
    Mac Gillivray, L.R., Atwood, J.L.: Structural classification and general principles for the design of spherical molecular hosts. Angew. Chem. Int. Ed. 38(8), 1018–1033 (1999)CrossRefGoogle Scholar
  9. 9.
    Markowitz, M.A., Bielski, R.S., Regen, L.: Ultrathin monolayers and vesicular membranes from calix[6]arenes. Langmuir 5(1), 276–278 (1989)CrossRefGoogle Scholar
  10. 10.
    Lee, M., Lee, S.J., Jiang, L.H.: Stimuli-responsive supramolecular nanocapsules from amphiphilic calixarene assembly. J. Am. Chem. Soc. 126(40), 12724–12725 (2004)CrossRefGoogle Scholar
  11. 11.
    Strobel, M., Kita-Tocarczyk, K., Taubert, A., Vebert, C., Heiney, P.A., Chami, M., Meier, W.: Self-assembly of amphiphilic calix[4]arenes in aqueous solution. Adv. Funct. Mater. 16(2), 252–259 (2006)CrossRefGoogle Scholar
  12. 12.
    Cabrerizo-Vilchez, M.A., Wege, H.A., Holgado-Terriza, J.A., Neumann, A.W.: Axisymmetric drop shape analysis as penetration Langmuir balance. Rev. Sci. Instrum. 70, 2438 (1999)CrossRefGoogle Scholar
  13. 13.
    Wege, H.A., Holgado-Terriza, J.A., Cabrerizo-Vílchez, M.A.: Development of a constant surface pressure penetration langmuir balance based on axisymmetric drop shape analysis. J. Colloid Interf. Sci. 249, 263 (2002)Google Scholar
  14. 14.
    Mayer, L.D., Tai, L.C.L., Ko, D.S.C., Masin, D., Ginsberg, R.S., Cullis, P.C., Bally, M.B.: Influence of vesicle size, lipid composition, and drug-to-lipid ratio on the biological activity of liposomal doxorubicin in mice. Cancer Res. 49, 5922–5930 (1989)Google Scholar
  15. 15.
    Kreuter, J.: Colloidal drug delivery systems. In: Dekker, M. (ed) New York (1994)Google Scholar
  16. 16.
    Pink, D.A., Balaya, M., Levadny, V., Quinn, B.: A model of polar group statics in lipid bilayers and monolayers. Langmuir 13(6), 1701–1711 (1997)CrossRefGoogle Scholar
  17. 17.
    Pieroni, O.I., Gonzalez-Sierra, M., Cabaleiro, M.C.: First one-step synthesis of octaethyl1,8,15,22-tetra-p-tolylphenyl[1,4]metacyclophan-3,5,10,12,17,19,24,26-octayloxyoctaacetate. J. Chem. Res. 455 (1994)Google Scholar
  18. 18.
    Danil de Namor, A.F., Cabaleiro, M.C., Vuano, B.M., Salomon, M., Pieroni, O.I., Pacheco Tanaka, D.A., Ng, Cho.Y., Llosa Tanco, M.A., Rodríguez, N.M., Cárdenas García, J.D., Casal, A.R.: Thermodynamic and electrochemical aspects of the interactions of functionalised cáliz[4]arenes and metal caltions in allosteric media. Pure Appl. Chem. 66(3), 435–440 (1994)CrossRefGoogle Scholar
  19. 19.
    Hernandez, S.A., Rodriguez, N.M., Pieroni, O.I.: Nueva síntesis del ligando macrociclico p-t-bultcalix[4]areno tetraacetato de butilo. Anales de la Asociación Química Argentina 83(12), 31–34 (1995)Google Scholar
  20. 20.
    Vuano, B.M., Pieroni, O.I.: Química Supramolecular. Distribución de isomeros en función de la concentración del catalizador. Anales de la Asociación Química Argentina 86(1–2), 69–76 (1998)Google Scholar
  21. 21.
    Vuano, B.M., Pieroni, O.I.: Synthesis. 1, 72–73 (1999)Google Scholar
  22. 22.
    Vuano, B.M., Pieroni, O.I.: Structural elucidation of two [1.4]metacyclophanes isomers by 2D NMR analysis. J. Mol. Struct. 525, 65–69 (2005)CrossRefGoogle Scholar
  23. 23.
    Taylor, J.R.: An Introduction to Error Analysis. The study of Uncertainties in Physical Measurements. University Science Books, Mill Valley, CA (1982)Google Scholar
  24. 24.
    Li, J., Miller, R., Möhwald, H.: Phospholipid monolayers and their dynamic interfacial behaviour studied by axisymmetric drop shape analysis. Thin Solid Films 284–285, 357–360 (1996)CrossRefGoogle Scholar
  25. 25.
    Motomura, K.: Thermodynamics of interfacial monolayers. Adv. Colloid Interface Sci. 12, 1–42 (1980)CrossRefGoogle Scholar
  26. 26.
    Tamada, K., Minamikawa, H., Hato, M.: Phase transition in glycolipid monolayers induced by attractions between oligosaccharide head groups. Langmuir 12(6), 1666–1674 (1996)CrossRefGoogle Scholar
  27. 27.
    Biegajski, J.E., Burzynski, R., Cadenhead, D.A., Prasad, P.N.: Molecular weight and comparative studies of poly-3- and poly-4-BCMU monolayers and multilayers. Macromolecules 23, 816–823 (1990)CrossRefGoogle Scholar
  28. 28.
    Grainger, D.W., Sunamoto, J., Akiyoshi, K., Goto, M., Knutson, K.: Mixed monolayers and cast films of acyl ester and acylamino phospholipids. Langmuir 8(10), 2479–2485 (1992)CrossRefGoogle Scholar
  29. 29.
    Kaganer, V.M., Möhwald, H., Dutta, P.: Structure and phase transitions in Langmuir monolayers. Rev. Mod. Phys. 71(3), 779–819 (1999)CrossRefGoogle Scholar
  30. 30.
    Adam, N.K.: Proc. R. Soc. Lond: A 101, 516 (1922)CrossRefGoogle Scholar
  31. 31.
    Shinkai, S.: Calixarenes––the third generation of supramolecules. Tetrahedron 49, 8933–8968 (1993)CrossRefGoogle Scholar
  32. 32.
    Böhmer, V.: Calixarenes, macrocycles with (almost) unlimited possibilities. Angew. Chem. Int. Ed. Engl. 34(7), 713–745 (1995)CrossRefGoogle Scholar
  33. 33.
    Gutsche, C.D.: Calixarenes. The Royal Society of Chemistry, Cambridge, England (1989)Google Scholar
  34. 34.
    Casnati, A., Barboso, S., Rouquette, H., Schwing-Weill, M.-J., Arnaud-Neu, F., Dozol, J.-F., Ungaro, R.: New efficient calixarene amide ionophores for the selective removal of strontium ion from nuclear waste: synthesis, complexation, and extraction properties. J. Am. Chem. Soc. 123(49), 12182–12190 (2001)CrossRefGoogle Scholar
  35. 35.
    Ungaro, R.: In: Mandolini, L., Ungaro, R. (eds.) Calixarenes in Action, pp. 1–10. Imperial College Press, London (2000)CrossRefGoogle Scholar
  36. 36.
    Dei, L., Nostro Lo, P., Capuzzi, G., Baglioni, P.: Langmuir films of p-tert-butylcalix[8]arene. Conformations at the water––air interface and complexation of fullerene C60. Langmuir 14(15), 4143–4147 (1998)CrossRefGoogle Scholar
  37. 37.
    Markowitz, M.A., Janout, V., Castner, D.G., Regen, S.L.: Perforated monolayers: design and synthesis of porous and cohesive monolayers from mercurated calix[n]arenes. J. Am. Chem. Soc. 111(21), 8192–8200 (1989)CrossRefGoogle Scholar
  38. 38.
    Markowitz, M.A., Bielski, R., Regen, S.L.: Perforated monolayers: porous and cohesive monolayers from mercurated calix[6]arenes. J. Am. Chem. Soc. 110, 7545–7546 (1988)CrossRefGoogle Scholar
  39. 39.
    Lo Nostro, P., Casnati, A., Bossoletti, L., Dei, L., Baglioni, P.: Complexation properties of calixarenes in Langmuir films at the water-air interface. Colloid Surf. A Physicochem. Eng. Aspects 116, 203–209 (1996)CrossRefGoogle Scholar
  40. 40.
    Van Veggel, F.C.J.M.: Molecular modeling of calixarenes and their host-guest complexes. In: Mandolini, L., Ungaro, R. (eds.) Calixarenes in Action, pp 11–36. Imperial College Press, London (2000)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Paula V. Messina
    • 1
    • 2
  • Olga Pieroni
    • 1
    • 2
  • Bruno Vuano
    • 3
  • Juan Manuel Ruso
    • 4
  • Gerardo Prieto
    • 5
  • Félix Sarmiento
    • 5
  1. 1.Departamento de QuímicaUniversidad Nacional del SurBahia BlancaArgentina
  2. 2.INQUISUR-CONICETUniversidad Nacional del SurBahia BlancaArgentina
  3. 3.Facultad Regional Bahía BlancaUniversidad TecnológicaBahia BlancaArgentina
  4. 4.Soft Matter and Molecular Biophysics Group, Departamento de Física Aplicada, Facultade de FísicaUniversidad de Santiago de CompostelaSantiago de CompostelaSpain
  5. 5.Biophysics and Interfaces Group, Departamento de Física Aplicada, Facultade de FísicaUniversidad de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations