Calixarenes functionalized with phosphine oxide and diamide functions as extractants and ionofores for rare-earth metals

  • M. Yu. Alyapyshev
  • V. A. Babain
  • V. I. Boyko
  • I. I. Eliseev
  • D. O. Kirsanov
  • O. V. Klimchuk
  • A. V. Legin
  • E. S. Mikhailina
  • R. V. Rodik
  • I. V. Smirnov
Original Article

Abstract

Calixarene-based ligands with phosphine oxide and diamide functions at wide and narrow rims are synthesized and studied as extracting agents for liquid extraction and ionophores for polymeric electrochemical ion sensors. Calixarene ligands are compared with corresponding phosphine oxide and diamide ligands which are not attached to the calixarene platform. Extraction and sensor properties of the ligands were studied in different metal ion solution with special attention paid to rare-earth metals. Attachment of phosphine oxide groups to the calixarene platform leads to the sharp increase of both extraction and sensing ability of the corresponding systems comparing to non-bonded phosphine oxide. In case of the diamide derivatives attached to the calixarene performance of corresponding ligands was similar to those of non-bonded diamides.

Keywords

Calixarene-based ligands Phosphine oxide functions Diamide functions TODGA Lanthanides extraction Electrochemical ion sensors 

References

  1. 1.
    Arnaud-Neu, F., Schwing-Weill, M.-J., Dozol, J.F.: Calixarenes for nuclear waste treatment. In: Asfari, Z., Böhmer, V., Harrowfield, J., Vicens, J. (eds.) Calixarenes 2001. Kluwer Academic Publishers, The Netherlands (2001)Google Scholar
  2. 2.
    Gutsche, C.D.: Calixarenes: an introduction, 2nd edn. RSC-Publishing, Cambridge (2008)Google Scholar
  3. 3.
    Calixarenes for separations. In: Lumetta, G.J., Rogers, R.D., Gopalan, A.S. (eds.) ACS symposium series, vol. 757 (2000)Google Scholar
  4. 4.
    Arnaud-Neu, F., Böhmer, V., Dozol, J.-F., Grüttner, C., Jakobi, R.A., Kraft, D., Mauprivez, O., Rouquette, H., Schwing-Weill, M.-J., Simon, N., Vogt, W.: Calixarenes with diphenylphosphoryl acetamide functions at the upper rim. A new class of highly efficient extractants for lanthanides and actinides. J. Chem. Soc., Perkin Trans. 2 6, 1175–1182 (1996)CrossRefGoogle Scholar
  5. 5.
    Barboso, S., Carrera, A.G., Matthews, S.E., Arnaud-Neu, F., Böhmer, V., Dozol, J.-F., Rouquette, H., Schwing-Weill, M.-J.: Calix[4]arenes with CMPO functions at the narrow rim. Synthesis and extraction properties. J. Chem. Soc., Perkin Trans. 2 4, 719–723 (1999)CrossRefGoogle Scholar
  6. 6.
    Sansone, F., Fontanella, M., Casnati, A., Ungaro, R., Böhmer, V., Saadioui, M., Liger, K., Dozol, J.-F.: CMPO-substituted calix[6]- and calix[8]arene extractants for the separation of An3+/Ln3+ from radioactive waste. Tetrahedron 62(29), 6749–6753 (2006)CrossRefGoogle Scholar
  7. 7.
    Motornaya, A., Vatsouro, I., Shokova, E., Hubscher-Bruder, V., Alyapyshev, M., Babain, V., Karavan, M., Arnaud-Neu, F., Böhmer, V., Kovalev, V.: Adamantylcalixarenes with CMPO groups at the wide rim: synthesis and extraction of lanthanides and actinides. Tetrahedron 63(22), 4748–4755 (2007)CrossRefGoogle Scholar
  8. 8.
    V. Böhmer. CMPO-substituted calixarenes. In: Lumetta, G.J., Rogers, R.D., Gopalan, A.S. (eds.) Calixarenes for separations. ACS symposium series, vol. 757, pp. 135–149 (2000)Google Scholar
  9. 9.
    Legin, A., Babain, V., Kirsanov, D., Borovoy, A.V., Herbst, R.S.: Cross-sensitive rare-earth metal sensors based on bidentate neutral organophosphorus compounds and chlorinated cobalt dicarbollide. Anal. Chim. Acta 572, 243–247 (2006)CrossRefGoogle Scholar
  10. 10.
    Legin, A.V., Babain, V.A., Kirsanov, D.O., Mednova, O.V.: Cross-sensitive rare earth metal ion sensors based on extraction systems. Sens. Actuators B Chem. 131, 29–36 (2008)CrossRefGoogle Scholar
  11. 11.
    Vlasov, Yu.G., Legin, A.V., Rudnitskaya, A.M.: Electronic tongue: chemical sensor systems for analysis of aquatic media. Russ. J. Gen. Chem 78(12), 2532–2544 (2008)CrossRefGoogle Scholar
  12. 12.
    Bühlmann, P., Pretsch, E., Bakker, E.: Carrier-based ion-selective electrodes and bulk optodes. 2. Ionophores for potentiometric and optical sensors. Chem. Rev. 98(4), 1593–1688 (1998)CrossRefGoogle Scholar
  13. 13.
    Ludwig, R., Dzung, N.T.: Calixarene-based molecules for cation recognition. Sensors 2(10), 397–416 (2002)CrossRefGoogle Scholar
  14. 14.
    Kalchenko, V.I.: Calixarene receptors of environmentally hazardous and biorelevant molecules and ions. Pure Appl. Chem. 80(7), 1449–1458 (2008)CrossRefGoogle Scholar
  15. 15.
    Bocheńska, M., Zielińska, A., Pomećko, R., Hubscher-Bruder, V., Arnaud-Neu, F.: Lower rim substituted tert-butyl calix[4]arene (part VII): ionophoric properties of calix[4]arene-crown-6 derivatives in plasticized PVC-membrane electrodes and in solution. J. Incl. Phenom. Macro. Chem. 52(1), 129–134 (2005)CrossRefGoogle Scholar
  16. 16.
    Bocheńska, M., Hoffmann, M., Lesińska, U., Luks, E., Radecka-Paryzek, W.: Lower rim substituted tert-butylcalix[4]arenes. Part 8: calix[4]arenes with dialkoxyphosphoryl functions. Synthesis and complexing properties. Tetrahedron 61(52), 12307–12313 (2005)CrossRefGoogle Scholar
  17. 17.
    Shokova, E.A., Motornaya, A.E., Shestakova, A.K., Kovalev, V.V.: p-(3-Carboxy- and 3-carboxymethyl-1-adamantyl)calix[4]arenes: synthesis and arming with amino acid units. Tetrahedron Lett. 45(34), 6465–6469 (2004)CrossRefGoogle Scholar
  18. 18.
    Smirnov, I., Babain, V., Efremova, T., Kal’chenko, V.: Extraction of americium and europium by phosphorylated calix-arenes. J. Nucl. Sci. Technol. 39(Suppl. 3), 321–324 (2002)Google Scholar
  19. 19.
    Smirnov, I.V., Karavan, M.D., Efremova, T.I., Babain, V.A., Miroshnichenko, S.I., Cherenok, S.A., Kal’chenko, V.I.: Extraction of Am, Eu, Tc, and Pd from nitric acid solutions with phosphorylated calixarenes. Radiochemistry 49(5), 482–492 (2007)CrossRefGoogle Scholar
  20. 20.
    Klimchuk, O., Atamas, L., Miroshnichenko, S., Kalchenko, V., Smirnov, I., Babain, V., Varnek, A., Wipff, G.: New wide rim phosphomethylated calix[4]arenes in extraction of americium and europium. J. Incl. Phenom. Macro. Chem. 49(1–2), 47–56 (2004)Google Scholar
  21. 21.
    Van Wageningen, A.M.A., Snip, E., Verboom, W., Reinhoudt, D.N., Boerrigter, H.: Synthesis and application of iso(thio)cyanate-functionalised calix[4]arenas. Liebigs Ann 1997(11), 2235–2245 (1997)CrossRefGoogle Scholar
  22. 22.
    Boyko, V.I., Rodik, R.V., Severenchuk, I.N., Voitenko, Z.V., Kalchenko, V.I.: A novel method for the synthesis of 2, 2-dimethyl-1, 3-dioxolan-4-one, and its reactions with secondary amines. Synthesis 2007(14), 2095–2096 (2007)CrossRefGoogle Scholar
  23. 23.
    Pokhitonov, Yu., Smirnov, I., Shadrin, A., Karavan, M.: Palladium extraction recovery from the high level liquid wastes by phosphorylated calixarenes solutions. Proceedings of the 15th Pacific Basin Nuclear Conference, Sydney 2006; (http://www.pacificnuclear.org/pnc/2006-Proceedings/pdf/0610015final00087.pdf)
  24. 24.
    Zhu, Z.-X., Sasaki, Y., Suzuki, H., Suzuki, S., Kimura, T.: Cumulative study on solvent extraction of elements by N, N, N′, N′-tetraoctyl-3-oxapentanediamide (TODGA) from nitric acid into n-dodecane. Anal. Chim. Acta 527(2), 163–168 (2004)CrossRefGoogle Scholar
  25. 25.
    Nash, K.L., Jensen, M.P.: Analytical separations of the lanthanides: basic chemistry and methods. In: Gschnedner, K.A., Jr., Eyring, L. (eds.) Handbook on the Physics and Chemistry of Rare Earths, vol. 28, 311–371. Elsevier Science B.V. (2000)Google Scholar
  26. 26.
    Narita, H., Yaita, T., Tachimori, S.: Extraction of lanthanides with N, N′-Dimethyl-N, N′-diphenyl-malonamide and -3, 6-dioxaoctanediamide. Solv. Extr. Ion Exch. 22(2), 135–145 (2004)CrossRefGoogle Scholar
  27. 27.
    Sasaki, Y., Zhu, Z.-X., Sugo, Y., Suzuki, H., Suzuki, H., Kimura, T.: Extraction capacity of diglycolamide derivatives for Ca(II), Nd(III) and Zr(IV) from nitric acid to n-dodecane containing a solvent modifier. Anal. Sci. 21(10), 1171–1175 (2005)CrossRefGoogle Scholar
  28. 28.
    Li, W., Wang, X., Zhang, H., Meng, S., Li, D.: Solvent extraction of lanthanides and yttrium from nitrate medium with CYANEX 925 in heptane. J. Chem. Technol. Biotechnol. 82(4), 376–381 (2007)CrossRefGoogle Scholar
  29. 29.
    Xu, D., Katsu, T.: Application of tri-n-octylphosphine oxide as an ionophore for a vanadyl ion-selective membrane electrode. Electroanalysis 13(10), 868–871 (2001)CrossRefGoogle Scholar
  30. 30.
    Cadogan, F., Kane, P., McKervey, M.A., Diamond, D.: Lead-selective electrodes based on calixarene phosphine oxide derivatives. Anal. Chem. 71(24), 5544–5550 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • M. Yu. Alyapyshev
    • 1
  • V. A. Babain
    • 1
  • V. I. Boyko
    • 2
  • I. I. Eliseev
    • 1
  • D. O. Kirsanov
    • 3
  • O. V. Klimchuk
    • 2
  • A. V. Legin
    • 3
  • E. S. Mikhailina
    • 3
  • R. V. Rodik
    • 2
  • I. V. Smirnov
    • 1
  1. 1.Khlopin Radium InstituteSt. PetersburgRussia
  2. 2.The Institute of Organic ChemistryNational Academy of Sciences of UkraineKyiv-94Ukraine
  3. 3.Chemistry Department, Laboratory of Chemical SensorsSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations