Advertisement

The dual personality of ionic copper in biology

  • Martine CuillelEmail author
Original Article

Abstract

Biological copper is mainly involved in electron transport to catalyse essential oxido-reduction processes. It is an essential trace element which is extremely toxic because exchangeable intracellular copper is Cu(I) which generates reactive oxygen species. To handle this paradox the evolution has led to a fine homeostasis in which copper ions are never free. Intracellular Cu(I) instead is bound to numerous proteins forming specific cascades towards its targets.

Keywords

Copper Biology Homeostasis Toxicity 

Notes

Acknowledgments

I thank Florent Guillain for stimulating discussions that helped in preparation of this manuscript just before his uptake into a new life after 40 harmonious lab’s years and Elisabeth Mintz, a member of our team, for critical reading and useful comments.

References

  1. 1.
    Peña, M.M., Lee, J., Thiele, D.J.: A delicate balance: homeostatic control of copper uptake and distribution. J. Nutr. 129, 1251–1260 (1999)Google Scholar
  2. 2.
    Frausto da Silva, J.J.R., Williams, R.J.P.: The Biological Chemistry of the Elements. Clarendon Press, Oxford (2001)Google Scholar
  3. 3.
    Rensing, C., Grass, G.: Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol. Rev. 27, 197–213 (2003)CrossRefGoogle Scholar
  4. 4.
    Cotton, F.A., Wilkinson, G.: Advanced Inorganic Chemistry. Wiley, New York (1987)Google Scholar
  5. 5.
    Huheey, J.E., Keiter, E.A., Keiter, R.L.: Inorganic Chemistry: Principles of Structure and Reactivity. Harper Collins College, New York (1993)Google Scholar
  6. 6.
    Karlin, S., Zhu, Z.Y., Karlin, K.D.: The extended environment of mononuclear metal centers in protein structures. Proc. Natl. Acad. Sci. USA. 94, 14225–14230 (1997)CrossRefGoogle Scholar
  7. 7.
    Koch, K.A., Peña, M.M., Thiele, D.J.: Copper-binding motifs in catalysis, transport, detoxification and signaling. Chem. Biol. 4, 549–560 (1997)CrossRefGoogle Scholar
  8. 8.
    Solomon, E.I., Sundaram, U.M., Machonkin, T.E.: Multicopper oxidases and oxygenases. Chem. Rev. 96, 2563–2606 (1996)CrossRefGoogle Scholar
  9. 9.
    Hornstra, I.K., Birge, S., Starcher, B., Bailey, A.J., Mecham, R.P., et al.: Lysyl oxidase is required for vascular and diaphragmatic development in mice. J. Biol. Chem. 278, 14387–14393 (2003)CrossRefGoogle Scholar
  10. 10.
    Czyzyk, T.A., Ning, Y., Hsu, M.S., Peng, B., Mains, R.E., et al.: Deletion of peptide amidation enzymatic activity leads to edema and embryonic lethality in the mouse. Dev. Biol. 287, 301–313 (2005)CrossRefGoogle Scholar
  11. 11.
    Vulpe, C.D., Kuo, Y.M., Murphy, T.L., Cowley, L., Askwith, C., et al.: Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat. Genet 21, 195–199 (1999)CrossRefGoogle Scholar
  12. 12.
    Sarkar, B.: Metal replacement in DNA-binding zinc finger proteins and its relevance to mutagenicity and carcinogenicity through free radical generation. Nutrition 11, 646–649 (1995)Google Scholar
  13. 13.
    De Feo, C.J., Aller, S.G., Siluvai, G.S., Blackburn, N.J., Unger, V.M.: Three-dimensional structure of the human copper transporter hCTR1. Proc Natl. Acad. Sci. USA 106, 4237–4242 (2009)CrossRefGoogle Scholar
  14. 14.
    De Rome, L., Gadd, G.M.: Measurement of copper uptake in Saccharomyces cerevisiae using a Cu2+ -selective electrode. FEMS Microbiol. Lett. 43, 283–287 (1987)CrossRefGoogle Scholar
  15. 15.
    Labbé, S., Zhu, Z., Thiele, D.J.: Copper-specific transcriptional repression of yeast genes encoding critical components in the copper transport pathway. J. Biol. Chem. 272, 15951–15958 (1997)CrossRefGoogle Scholar
  16. 16.
    Kuo, Y.M., Gybina, A.A., Pyatskowit, J.W., Gitschier, J., Prohaska, J.R.: Copper transport protein (Ctr1) levels in mice are tissue specific and dependent on copper status. J. Nutr. 136, 21–26 (2006)Google Scholar
  17. 17.
    Finney, L.A., O’Halloran, T.V.: Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science 300, 931–936 (2003)CrossRefGoogle Scholar
  18. 18.
    Calderone, V., Dolderer, B., Hartmann, H.J., Echner, H., Luchinat, C., et al.: The crystal structure of yeast copper thionein: the solution of a long-lasting enigma. Proc. Natl. Acad. Sci. USA. 102, 51–56 (2005)CrossRefGoogle Scholar
  19. 19.
    Rae, T.D., Schmidt, P.J., Pufahl, R.A., Culotta, V.C., O’Halloran, T.V.: Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284, 805–808 (1999)CrossRefGoogle Scholar
  20. 20.
    Glerum, D.M., Shtanko, A., Tzagoloff, A.: Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase. J. Biol. Chem. 271, 14504–14509 (1996)CrossRefGoogle Scholar
  21. 21.
    Horng, Y.C., Cobine, P.A., Maxfield, A.B., Carr, H.S., Winge, D.R.: Specific copper transfer from the Cox17 metallochaperone to both Sco1 and Cox11 in the assembly of yeast cytochrome C oxidase. J. Biol. Chem. 279, 35334–35340 (2004)CrossRefGoogle Scholar
  22. 22.
    Walker, J.M., Tsivkovskii, R., Lutsenko, S.: Metallochaperone Atox1 transfers copper to the NH2-terminal domain of the Wilson’s disease protein and regulates its catalytic activity. J. Biol. Chem. 277, 27953–27959 (2002)CrossRefGoogle Scholar
  23. 23.
    Lin, S.J., Pufahl, R.A., Dancis, A., O’Halloran, T.V., Culotta, V.C.: A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. J. Biol. Chem. 272, 9215–9220 (1997)CrossRefGoogle Scholar
  24. 24.
    Morin, I., Gudin, S., Mintz, E., Cuillel, M.: Dissecting the role of the N-terminal metal-binding domains in activating the yeast copper ATPase in vivo. Febs. J. (2009) (in press)Google Scholar
  25. 25.
    La Fontaine, S., Mercer, J.F.: Trafficking of the copper-ATPases, ATP7A and ATP7B: role in copper homeostasis. Arch. Biochem. Biophys. 463, 149–167 (2007)CrossRefGoogle Scholar
  26. 26.
    Mercer, J.F.: The molecular basis of copper-transport diseases. Trends Mol. Med. 7, 64–69 (2001)CrossRefGoogle Scholar
  27. 27.
    Sarkar, B.: Early copper histidine therapy in classic Menkes disease. Ann. Neurol. 41, 134–136 (1997)CrossRefGoogle Scholar
  28. 28.
    Gitlin, J.D.: Wilson disease. Gastroenterology 125, 1868–1877 (2003)CrossRefGoogle Scholar
  29. 29.
    Gaggelli, E., Kozlowski, H., Valensin, D., Valensin, G.: Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem. Rev. 106, 1995–2044 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.CEA, DSV, iRTSV, Laboratoire de Chimie et Biologie des MétauxGrenoble Cedex 9France
  2. 2.CNRS, UMR 5249GrenobleFrance
  3. 3.Université Joseph FourierGrenobleFrance

Personalised recommendations