Temperature-dependent solvent effect on the kinetic energy distribution on p-cresol molecule as building block of calixarene capsules

  • Sándor Kunsági-Máté
  • Sándor Bakonyi
  • László Kollár
  • Bernard Desbat
Original Article

Abstract

The solvent effect on the kinetic energy distribution of p-cresol molecule was investigated by quantum-chemical (QM) method and molecular dynamics (MD) simulations, then the consequences were checked experimentally by photoluminescence (PL) and differential scanning calorimetry (DSC) methods. Results of QM calculations highlight the coupling of two vibrational normalmodes of p-cresol molecule in the presence of ethanol while no similar coupling was observed in methanol. MD simulations show that the normalmode coupling in ethanol is more pronounced at higher temperature and it is preferably based on the molecular friction of the cresol molecule with its environment. The theoretical observations were also proved experimentally. The dissociation rate of calixarene–phenol complexes were measured by DSC method. The decreased dissociation rate of the calixarene–phenol complexes observed in ethanol reflects the increased motion of the methyl groups of cresol units of calixarene in the ethanol solvent, a property which was predicted by the theoretical results. Our findings are applicable to many areas of chemistry where the formation and dissociation rates play important role: e.g., in the development of chemical molecular sensors or developing molecular containers for drugs towards pharmaceutical applications.

Keywords

Molecular recognition Inclusion complexes Molecular modeling Photoluminescence Calorimetry 

References

  1. 1.
    Nilsson, A., Pettersson, L.G.M., Nørskov, J.K.: Chemical Bonding at Surfaces and Interfaces. Elsevier, Amsterdam (2008)Google Scholar
  2. 2.
    Mohammed-Ziegler, I., Billes, F.: Optical spectroscopy and theoretical studies in calixarene chemistry. J. Incl. Phenom. Macrocycl. Chem. 58, 19–42 (2007). doi:10.1007/s10847-006-9132-z CrossRefGoogle Scholar
  3. 3.
    Gutsche, C.D.: Calixarenes revisited. In: Stoddart, J.F. (ed.) Monographs in Supramolecular Chemistry. Royal Society of Chemistry, London (1998)Google Scholar
  4. 4.
    Böhmer, V.: Calixarenes. Macrocycles with (almost) unlimited possibilities. Angew. Chem. Int. Ed. Engl. 34, 713–745 (1995). doi:10.1002/anie.199507131 CrossRefGoogle Scholar
  5. 5.
    Peles-Lemli, B., Peles-Lemli, J., Bitter, I., Kollár, L., Nagy, G., Kunsági-Máté, S.: Competitive thermodynamic and kinetic processes during dissociation of some host–guest complexes of calix[4]arene derivatives. J. Incl. Phenom. Macrocycl. Chem. 59(3–4), 251–256 (2007). doi:10.1007/s10847-007-9322-3 CrossRefGoogle Scholar
  6. 6.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A. Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford CT (2004)Google Scholar
  7. 7.
    HyperChem Professional 7., Hypercube (2002)Google Scholar
  8. 8.
    Bender, T.: “Solvent Cage”, Excel Macros to HyperChem, Hypercube, www.hyper.com (2000)
  9. 9.
    Ramachandran, G., Schlick, T.: Solvent effects on supercoiled DNA dynamics explored by Langevin dynamics simulations. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 51, 6188–6203 (1995). doi:10.1103/PhysRevE.51.6188 Google Scholar
  10. 10.
    Náray-Szabó, G.: Chemical fragmentation in quantum mechanical methods. Comput. Chem. 24, 287–294 (2000). doi:10.1016/S0097-8485(99)00065-0 CrossRefGoogle Scholar
  11. 11.
    Lide, D.R.: Handbook of Chemistry and Physics. CRC Press, 1995–1996Google Scholar
  12. 12.
    Dewar, M.J.S., Zoebish, E.G., Healy, E.F., Stewart, J.P.P.: Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107, 3902–3909 (1985). doi:10.1021/ja00299a024 CrossRefGoogle Scholar
  13. 13.
    Kunsági-Máté, S., Végh, E., Nagy, G., Kollár, L.: Influence of the molecular environment on the three-center versus four-center elimination of hbr from vinyl bromide: a theoretical approach. J. Phys. Chem. A 106, 6319–6324 (2002). doi:10.1021/jp014512r CrossRefGoogle Scholar
  14. 14.
    Kunsági-Máté, S., Végh, E., Nagy, G., Kollár, L.: Quantum chemical investigations on the dynamics of hydrogen halide elimination from vinyl-halides: influence of the molecular environment. Chem. Phys. Lett. 388, 84–88 (2004). doi:10.1016/j.cplett.2004.02.075 CrossRefGoogle Scholar
  15. 15.
    Almi, M., Arduini, A., Casnati, A., Pochini, A., Ungaro, R.: Chloromethylation of calixarenes and synthesis of new water soluble macrocyclic hosts. Tetrahedron 45, 2177–2182 (1989). doi:10.1016/S0040-4020(01)80077-6 CrossRefGoogle Scholar
  16. 16.
    Kunsági-Máté, S., Bitter, I., Grün, A., Nagy, G., Kollár, L.: Solvent effect on the complex formation of distally dialkylated calix[4]arenes with 1-chloro-4-(trifluoromethyl)benzene. Anal. Chim. Acta 461, 273–279 (2002). doi:10.1016/S0003-2670(02)00275-1 CrossRefGoogle Scholar
  17. 17.
    Kunsági-Máté, S., Végh, E., Nagy, G., Kollár, L.: Investigation of the interaction of calixarene (host) and neutral benzotrifluoride (guest). Comparison of luminescence characteristics of calixarenes with results of model calculations relating to complex formation. Sens. Actuators B Chem. 76(1–3), 545–550 (2001). doi:10.1016/S0925-4005(01)00621-9 CrossRefGoogle Scholar
  18. 18.
    Kunsági-Máté, S., Szabó, K., Lemli, B., Bitter, I., Nagy, G., Kollár, L.: Increased complexation ability of water-soluble calix[4]resorcinarene octacarboxylate toward phenol by the assistance of Fe(II) ions. J. Phys. Chem. B 108, 15519–15522 (2004). doi:10.1021/jp048271+ CrossRefGoogle Scholar
  19. 19.
    Kunsági-Máté, S., Szabó, K., Lemli, B., Bitter, I., Nagy, G., Kollár, L.: Unexpected effect of charge density of the aromatic guests on the stability of calix[6]arene–phenol host–guest complexes. J. Phys. Chem. A 109, 5237–5242 (2005). doi:10.1021/jp050082j CrossRefGoogle Scholar
  20. 20.
    Kunsági-Máté, S., Szabó, K., Desbat, B., Brunneel, J.L., Bitter, I., Kollár, L.: Complexation of phenols by calix[4]arene diethers in a low-permittivity solvent. Self-switched complexation by 25,27-dibenzyloxycalix[4]arene. J. Phys. Chem. B 111, 7218–7223 (2007). doi:10.1021/jp068567a CrossRefGoogle Scholar
  21. 21.
    Kunsági-Máté, S., Csók, Z., Tuzi, A., Kollár, L.: Permittivity-dependent entropy driven complexation ability of cone and paco tetranitro-calix[4]arene toward para-substituted phenols. J. Phys. Chem. B 112, 11743–11749 (2008). doi:10.1021/jp803498v CrossRefGoogle Scholar
  22. 22.
    Kissinger, H.E.: Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702–1706 (1957). doi:10.1021/ac60131a045 CrossRefGoogle Scholar
  23. 23.
    Kunsági-Máté, S., Szabó, K., Lemli, B., Bitter, I., Nagy, G., Kollár, L.: Host–guest interaction between water-soluble calix[6]arene hexasulfonate and p-nitrophenol. Thermochim. Acta 425(1–2), 121–126 (2005). doi:10.1016/j.tca.2004.06.015 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Sándor Kunsági-Máté
    • 1
  • Sándor Bakonyi
    • 1
  • László Kollár
    • 2
  • Bernard Desbat
    • 3
  1. 1.Department of General and Physical ChemistryUniversity of PécsPecsHungary
  2. 2.Department of Inorganic Chemistry University of PécsUniversity of PécsPecsHungary
  3. 3.Chimie et Biochimie des Molécules et NanosystèmesUMR5248 CNRS, University of Bordeaux 1, ENITABPessacFrance

Personalised recommendations