Influence of inclusion complexation with β-cyclodextrin on the photostability of selected imidazoline-derived drugs

  • Abdulilah Dawoud Bani-Yaseen
  • Nathir F. Al-Rawashdeh
  • Idrees Al-Momani
Original Article


In this paper, the influence of inclusion complexation with β-cyclodextrin (β-CD) on the photostability of antazoline, xylometazoline, and naphazoline in aqueous media was investigated. The photodegradation reaction of these drugs molecules was explored using UV–vis spectrophotometery-based kinetic analysis and high performance liquid chromatography (HPLC). Quantitative evaluation of the influence of β-CD was judged based on the observed rate constant (kobs), half-life time (t0.5) and t0.1 of the photodegradation reaction and the peak area of the corresponding analyte after photodegradation using HPLC separation. It has been demonstrated that the photostability of these selected imidazoline-based drugs has been enhanced upon forming inclusion complexes with β-CD in aqueous media. Moreover, high consistency regarding the photostability enhancement was obtained using both techniques. Hypothetical structure for 1:1 inclusion complexes was proposed based on molecular mechanics calculations, which in turn provide an insight for the energetically preferential structure of the inclusion complexes. The results obtained demonstrate that β-CD can be utilized as photostabilizer additive for enhancing the photostability of imidazoline-derived drugs molecules.


Photostability Photodegradation β-Cyclodextrin Imidazoline-derived drugs Inclusion complexes 


  1. 1.
    Damiani, E., Tursilli, R., Casolari, A., Astolfi, P., Greci, L., Scalia, S.: Effect of complexation with randomly methylated β-cyclodextrin on the aqueous solubility, photostability and antioxidant activity of an indolinonic nitroxide radical. Free Radic. Res. 39, 41 (2005). doi:10.1080/10715760400023689 CrossRefGoogle Scholar
  2. 2.
    Ragnoa, G., Cione, F., Garofalo, A., Genchi, G., Ioele, G., Risoli, A., et al.: Design and monitoring of photostability systems foramlodipine dosage forms. Int. J. Pharm. 265, 125 (2003). doi:10.1016/j.ijpharm.2003.07.001 CrossRefGoogle Scholar
  3. 3.
    Valero, M., Esteban, B.: Effect of binary and ternary polyethylene glycol and/or β-cyclodextrin complexes on the photochemical and photosensitizing properties of Naproxen. J. Photochem. Photobiol. B Biol. 74, 151 (2004). doi:10.1016/j.jphotobiol.2004.03.004 CrossRefGoogle Scholar
  4. 4.
    Cosa, G.: Photodegradation and photosensitization in pharmaceutical products: assessing drug phototoxicity. Pure Appl. Chem. 76, 263 (2004). doi:10.1351/pac200476020263 CrossRefGoogle Scholar
  5. 5.
    Bayomi, M.A., Abanumay, K.A., Al-Angary, A.A.: Effect of inclusion complexation with cyclodextrins on photostability of nifedipine in solid state. Int. J. Pharm. 243, 107 (2002). doi:10.1016/S0378-5173(02)00263-6 CrossRefGoogle Scholar
  6. 6.
    Ahmad, I., Fasihullah, Q., Vaid, F.H.M.: Effect of light intensity and wavelengths on photodegradation reactions of riboflavin in aqueous solution. J. Photochem. Photobiol. B Biol. 82, 21 (2006). doi:10.1016/j.jphotobiol.2005.08.004 CrossRefGoogle Scholar
  7. 7.
    Tønnesen, H.H.: Formulation and stability testing of photolabile drugs. Int. J. Pharm. 225, 1 (2001). doi:10.1016/S0378-5173(01)00746-3 CrossRefGoogle Scholar
  8. 8.
    Desai, D.S., Abdelnasser, M.A., Rubitski, B.A., Varia, S.A.: Of uncoated tablets of sorivudine and nifedipine by incorporation of synthetic iron oxides. Int. J. Pharm. 103, 69 (1994). doi:10.1016/0378-5173(94)90204-6 CrossRefGoogle Scholar
  9. 9.
    Glass, B.D., Brown, M.E., Daya, S., Worthington, M.S., Drummond, P., Antunes, E., et al.: Influence of cyclodextrins on the photostability of selected drug molecules in solution and the solid-state. Int. J. Photoenergy 3, 205 (2001). doi:10.1155/S1110662X01000277 CrossRefGoogle Scholar
  10. 10.
    Biloti, D.N., Dos Reis, M.M., Ferreira, C., M.M, Pessine, F.B.T.: Photochemical behavior under UVA radiation of β-cyclodextrin included Parsol 1789 with a chemiometric approach. J. Mol. Struct. 480, 557 (1999). doi:10.1016/S0022-2860(98)00822-9 CrossRefGoogle Scholar
  11. 11.
    Brisaert, M., Gabriëls, M., Matthijs, V., Plaizier-Vercammen, J.: Liposomes with tretinoin: a physical and chemical evaluation. J. Pharm. Biomed. Anal. 26, 909 (2001). doi:10.1016/S0731-7085(01)00502-7 CrossRefGoogle Scholar
  12. 12.
    Cannors, K.A.: The stability of cyclodextrin complexes in aqueous solutions. Chem. Rev. 97, 1326 (1997)Google Scholar
  13. 13.
    Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743 (1998). doi:10.1021/cr970022c CrossRefGoogle Scholar
  14. 14.
    Dodziuk, H.: Cyclodextrins and their complexes: chemistry, analytical methods, applications. Wiley, Weinheim (2006)Google Scholar
  15. 15.
    Petrusewicz, J., Kaliszan, R.: Human blood platelet alpha adrenoceptor in view of the effects of various imidazol(in)e drugs on aggregation. Gen. Pharm. 22, 819 (1991)Google Scholar
  16. 16.
    Parini, A., Moudanos, C.G., Pizzinat, N., Lanier, S.M.: The elusive family of imidazoline binding sites. Trends Pharmacol. Sci. 17, 13 (1996). doi:10.1016/0165-6147(96)81564-1 CrossRefGoogle Scholar
  17. 17.
    Kaliszan, W., Petrusewicz, J., Kaliszan, R.: Imidazoline receptors in relaxation of acetylcholine-constricted isolated rat jejunum. Pharm. Rep. 58, 700 (2006)Google Scholar
  18. 18.
    Sortino, S., Giuffrida, S., Scaiano, J.C.: Phototoxicity of naphazoline evidence that hydrated electrons, nitrogen-centered radicals, and OH radicals trigger DNA damage: a combined photocleavage and laser flash photolysis study. Chem. Res. Toxicol. 12, 971 (1997). doi:10.1021/tx9900526 CrossRefGoogle Scholar
  19. 19.
    Tanaka, M., Ohkubo, K., Fukuzumi, S.: Reductive DNA cleavage Induced by UVA photoirradiation of NADH without oxygen. J. Am. Chem. Soc. 128, 12372 (2006). doi:10.1021/ja065073i CrossRefGoogle Scholar
  20. 20.
    Bosca, F., Miranda, M.: Photosensitizing drugs containing the benzophenone chromophore. J. Photochem. Photobiol. B Biol. 43, 1 (1998). doi:10.1016/S1011-1344(98)00062-1 CrossRefGoogle Scholar
  21. 21.
    Sortino, S., Cosa, G., Scaiano, J.C.: pH Effect on the efficiency of the photodeactivation pathways of naphazoline: a combined steady state and time resolved study. New J. Chem. 24, 59 (2000). doi:10.1039/b000712i CrossRefGoogle Scholar
  22. 22.
    Dawoud, A.A., Al-Rawashdeh, N.F.: Spectrofluorometric, thermal, and molecular mechanics studies of the inclusion complexation of selected imidazoline-derived drugs with β-cyclodextrin in aqueous media. J. Incl. Phenom. Macrocycl. Chem. 60, 293 (2008). doi:10.1007/s10847-007-9377-1 CrossRefGoogle Scholar
  23. 23.
    Albini, A., Fasani, E. (eds.): Drugs photochemistry and photostability. Royal Society of Chemistry, Cambridge, UK (1998)Google Scholar
  24. 24.
    Tønnesen, H.H. (ed.): Photostability of drugs and drug formulations. CRC Press, Boca Raton, FL, USA (2004)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Abdulilah Dawoud Bani-Yaseen
    • 1
  • Nathir F. Al-Rawashdeh
    • 2
  • Idrees Al-Momani
    • 3
  1. 1.Department of Chemistry, Faculty of ScienceTaibah UniversityAl-Madinah Al-MunawarahKingdom of Saudi Arabia
  2. 2.Department of Applied Chemical SciencesJordan university of Science and TechnologyIrbidJordan
  3. 3.Department of ChemistryYarmouk UniversityIrbidJordan

Personalised recommendations