Cyclodextrin based novel drug delivery systems

  • Amber Vyas
  • Shailendra Saraf
  • Swarnlata Saraf
Review Article


The versatile pharmaceutical material cyclodextrin’s (CDs) are classified into hydrophilic, hydrophobic, and ionic derivatives. By the early 1950s the basic physicochemical characteristics of cyclodextrins had been discovered, since than their use is a practical and economical way to improve the physicochemical and pharmaceutical properties such as solubility, stability, and bioavailability of administered drug molecules. These CDs can serve as multi-functional drug carriers, through the formation of inclusion complex or the form of CD/drug conjugate and, thereby potentially serving as novel drug carriers. This contribution outlines applications and comparative benefits of use of cyclodextrins (CDs) and their derivatives in the design of novel delivery systems like liposomes, microspheres, microcapsules, nanoparticles, cyclodextrin grafted cellulosic fabric, hydrogels, nanosponges, beads, nanogels/nanoassemblies and cyclodextrin-containing polymers. The article also focuses on the ability of CDs to enhance the drug absorption across biological barriers, the ability to control the rate and time profiles of drug release, drug safety, drug stability, and the ability to deliver a drug to targeted site. The article highlight’s on needs, limitations and advantages of CD based delivery systems. CDs, because of their continuing ability to find several novel applications in drug delivery, are expected to solve many problems associated with the delivery of different novel drugs through different delivery routes.


Cyclodextrin Complexed Novel drug delivery Liposomes Beads Nanosponges Nanogels/nanoassemblies Nanoparticles Hydrogels 



The authors are thankful All India Council of Technical Education New Delhi (8022/RID/NPROJ/RPS-11/2003–04) for financial assistance.


  1. 1.
    Connors, K.A.: Population characteristics of cyclodextrin complex stabilities in aqueous solution. J. Pharm. Sci. 84, 843–848 (1995)CrossRefGoogle Scholar
  2. 2.
    Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998)CrossRefGoogle Scholar
  3. 3.
    Ueda, H., Endo, T.: Large-ring cyclodextrins. In: Dodziuk, H. (ed.) Cyclodextrins and their Complexes. Chemistry, Analytical Methods, Applications, pp. 370–380. Wiley-VCH Verlag, Weinheim (2006)CrossRefGoogle Scholar
  4. 4.
    Larsen, K.L.: Large cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 43, 1–13 (2002)CrossRefGoogle Scholar
  5. 5.
    Loftsson, T., Brewester, M.: Pharmaceutical applications of cyclodextrins. Drug solubilization and stabilization. J. Pharm. Sci. 85, 1017–1025 (1996)CrossRefGoogle Scholar
  6. 6.
    Szejtli, J.: Cyclodextrin Technology. Kluwer Academic, Dordrecht (1988)Google Scholar
  7. 7.
    Szente, L., Szejtli, J.: Highly soluble cyclodextrin derivatives: chemistry, properties, and trends in development. Adv. Drug Deliv. Rev. 36, 17–38 (1999)CrossRefGoogle Scholar
  8. 8.
    Matsuda, H., Arima, H.: Cyclodextrins in transdermal and rectal delivery. Adv. Drug Deliv. Rev. 36, 81–99 (1999)CrossRefGoogle Scholar
  9. 9.
    Hirayama, F., Uekama, K.: Cyclodextrin-based controlled drug release system. Adv. Drug Deliv. Rev. 36, 125–141 (1999)CrossRefGoogle Scholar
  10. 10.
    Bilati, U., Allémann, E., Doelker, E.: Strategic approaches for overcoming peptide and protein instability within biodegradable nano- and microparticles. Eur. J. Pharm. Biopharm. 59, 375–388 (2005)CrossRefGoogle Scholar
  11. 11.
    Uekama, K., et al.: Sustained release of buserelin, a luteinizing hormone-releasing hormone agonist, from an injectable oily preparation utilizing ethylated β-cyclodextrin. J. Pharm. Pharmacol. 41, 874–876 (1989)Google Scholar
  12. 12.
    Loftsson, T., Brewster, M.E., Másson, M.: Role of cyclodextrins in improving oral drug delivery. Am. J. Drug Deliv. 2(4), 261–275 (2004)CrossRefGoogle Scholar
  13. 13.
    Rajewski, R.A., Stella, V.J.: Pharmaceutical applications of cyclodextrins in vivo drug delivery. J. Pharm. Sci. 85, 1142–1168 (1996)CrossRefGoogle Scholar
  14. 14.
    Irie, T., Uekama, K.: Pharmaceutical applications of cyclodextrins: III. Toxicological issues and safety evaluation. J. Pharm. Sci. 86(2), 147–162 (1997)CrossRefGoogle Scholar
  15. 15.
    Uekama, K., Hirayama, F., Irie, T.: Cyclodextrin drug carrier systems. Chem. Rev. 98, 2045–2076 (1998)CrossRefGoogle Scholar
  16. 16.
    Thompson, D.O.: Cyclodextrins-enabling excipients: their present and future use in pharmaceuticals. Crit. Rev. Ther. Drug Carrier Syst. 14, 1–104 (1997)Google Scholar
  17. 17.
    Szejtli, J.: Past, present, and future of cyclodextrin research. Pure Appl. Chem. 76(10), 1825–1845 (2004)CrossRefGoogle Scholar
  18. 18.
    Loftsson, T., Duchêne, D.: Historical perspectives: cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 329, 1–11 (2007)CrossRefGoogle Scholar
  19. 19.
    Schardinger, F.: Bildung kristallisierter Polysaccharide (Dextrine) aus Stärkekleister durch Microben. Zentralbl. Bakteriol. Parasitenk. Abt. 29(II), 188–197 (1911)Google Scholar
  20. 20.
    Freudenberg, K., Cramer, F.: Die Konstitution der Schardinger-Dextrine α, β und γ. Z. Naturforsch. 3b, 464 (1948)Google Scholar
  21. 21.
    Szejtli, J.: Medicinal applications of cyclodextrins. Res. Rev. 14, 353–386 (1994)CrossRefGoogle Scholar
  22. 22.
    Frömming, K.H., Szejtli, J.: Cyclodextrins in Pharmacy. Kluwer Academic, Dordrecht (1994)Google Scholar
  23. 23.
    Soliman, O.A.E., Kimura, K., Hirayama, F., Uekama, K., El-Sabbagh, H.M., El-Gawad, A.E.-G.H., Hashim, F.M.: Amorphous spironolactone-hydroxypropylated cyclodextrin complexes with superior dissolution and oral bioavailability. Int. J. Pharm. 149, 73–83 (1997)CrossRefGoogle Scholar
  24. 24.
    Savolainen, J., Jarvinen, K., Taipale, H., Jarho, P., Loftsson, T., Jarvinen, T.: Coadministration of a water-soluble polymer increases the usefulness of cyclodextrins in solid oral dosage forms. Pharm. Res. 15(11), 1696–1701 (1998)CrossRefGoogle Scholar
  25. 25.
    Wong, J.W., Yuen, K.H.: Improved oral bioavailability of artemisinin through inclusion complexation with β- and γ-cyclodextrin. Int. J. Pharm. 227, 177–185 (2001)CrossRefGoogle Scholar
  26. 26.
    Kikuchi, M., Hirayama, F., Uekama, K.: Improvement of oral and rectal bioavailabilities of carmofur by methylated β-cyclodextrin complexations. Int. J. Pharm. 38, 191–198 (1987)CrossRefGoogle Scholar
  27. 27.
    Evrard, B., Chiap, P., DeTullio, P., Ghalmi, F., Piel, G., Van Hees, T., Crommen, J., Losson, B., Delattre, L.: Oral bioavailability in sheep of albendazole from a suspension and from a solution containing hydroxypropyl-β-cyclodextrin. J. Control. Release 85(1–3), 45–50 (2002)CrossRefGoogle Scholar
  28. 28.
    Carrier, R.L., Miller, L.A., Ahmed, I.: The utility of cyclodextrins for enhancing oral bioavailability. J. Control. Release 123, 78–99 (2007)CrossRefGoogle Scholar
  29. 29.
    Gibaud, S., Zirar, S.B., Mutzenhardt, P., Fries, I., Astier, A.: Melarsoprol–cyclodextrins inclusion complexes. Int. J. Pharm. 306, 107–121 (2005) (ref 01)CrossRefGoogle Scholar
  30. 30.
    Szejtli, J., Szente, L.: Elimination of bitter, disgusting tastes of drugs and foods by cyclodextrins. Eur. J. Pharm. Biopharm. 61, 115–125 (2005)CrossRefGoogle Scholar
  31. 31.
    Weiszfeiler, V., Szejtli, J.: Bitterness reduction with beta-cyclodextrin. In: Huber, O., Szejtli, J. (eds.) Proc. Int. Symp. Cyclodextrins. Kluwer, Dordrecht, Neth. (1988) (CA:112:104658)Google Scholar
  32. 32.
    Andersen, F.M., Bundgaard, H., Mengel, H.B.: Formation, bioavailability and organoleptic properties of an inclusion complex of femoxetine with beta-cyclodextrin. Int. J. Pharm. 21, 51–60 (1984) (CA101:235497) Google Scholar
  33. 33.
    Uekama, K., Oh, K., Otagiri, M., Seo, H., Tsuruoka, M.: Improvement of some pharmaceutical properties of clofibrate by cyclodextrin complexation. Pharm. Acta Helv. 58, 338–342 (1983)Google Scholar
  34. 34.
    Ragnoa, G., Cione, E., Garofalo, A., Genchi, G., Ioele, G., Risoli, A., Spagnoletta, A.: Design and monitoring of photostability systems for amlodipine dosage forms. Int. J. Pharm. 265, 125–132 (2003)CrossRefGoogle Scholar
  35. 35.
    Chen, X., Chen, R., Guo, Z., Li, C., Li, P.: The preparation and stability of the inclusion complex of astaxanthin with β-cyclodextrin. Food Chem. 101, 1580–1584 (2007)CrossRefGoogle Scholar
  36. 36.
    Karathanos, V.T., Mourtzinos, I., Yannakopoulou, K., Andrikopoulos, N.K.: Study of the solubility, antioxidant activity and structure inclusion complex of vanillin with β-cyclodextrin. Food Chem. 101, 652–658 (2007)CrossRefGoogle Scholar
  37. 37.
    Ayala-Zavala, J.F., Soto-Valdez, H., González-León, A., Álvarez-Parrilla, E., Martín-Belloso, O., González-Aguilar, G.A.: Microencapsulation of cinnamon leaf (Cinnamomum zeylanicum) and garlic (Allium sativum) oils in β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 60(3–4), 359–368 (2008)CrossRefGoogle Scholar
  38. 38.
    Lindner, K.: Using cyclodextrin aroma complexes in the catering. Food/Nahrung. 26(7–8), 675–680 (2006)Google Scholar
  39. 39.
    Lucas-Abellán, C., Fortea, I., López-Nicolás, J.M., Núñez-Delicado, E.: Cyclodextrins as resveratrol carrier system. Food Chem. 104(1), 39–44 (2007)Google Scholar
  40. 40.
    Kim, J.H., Lee, S.K., Ki, M.H., Choi, W.K., Ahn, S.K., Shin, H.J., Il Hong, C.: Development of parenteral formulation for a novel angiogenesis inhibitor, CKD-732 through complexation with hydroxypropyl-β-cyclodextrin. Int. J. Pharm. 272, 79–89 (2004)CrossRefGoogle Scholar
  41. 41.
    Szejtli, J.: Cyclodextrin complexed generic drugs are generally not bio-equivalent with the reference products: therefore the increase in number of marketed drug/cyclodextrin formulations is so slow. J. Incl. Phenom. Macrocycl. Chem. 52, 1–11 (2005)CrossRefGoogle Scholar
  42. 42.
    Tasic, L.M., Jovanovic, M.D., Djuric, Z.R.: The influence of beta-cyclodextrin on the solubility and dissolution rate of paracetamol solid dispersions. J. Pharm. Pharmacol. 44, 52–55 (1992)Google Scholar
  43. 43.
    Connors, K.A.: Measurement of cyclodextrin complex stability constants. In: Szejtli, J., Osa, T. (eds.) Cyclodextrins. Comprehensive Supramolecular Chemistry, vol. 3, pp. 205–241. Elsevier Sciences, Oxford (1996)Google Scholar
  44. 44.
    Challa, R., Ahuja, A., Ali, J., Khar, R.K.: Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech. 6(2), E329–E357 (2005)CrossRefGoogle Scholar
  45. 45.
    Becket, G., Schep, L.J., Tan, M.Y.: Improvement of the in vitro dissolution of praziquantal by complexation with alpha, beta and gamma-cyclodextrins. Int. J. Pharm. 179, 65–71 (1999)CrossRefGoogle Scholar
  46. 46.
    Cavallari, C., Abertini, B., Rodriguez, M.L.G., Rodriguez, L.: Improved dissolution behavior of steam granulated piroxicam. Eur. J. Pharm. Biopharm. 54, 65–73 (2002)CrossRefGoogle Scholar
  47. 47.
    Ghorab, M.K., Adeyeye, M.C.: Enhancement of ibuprofen dissolution via wet granulation with beta cyclodextrin. Pharm. Dev. Technol. 6, 305–314 (2001)CrossRefGoogle Scholar
  48. 48.
    Sanghavi, N.M., Choudhari, K.B., Matharu, R.S., Viswanathan, L.: Inclusion complexation of Lorazepam with beta-cyclodextrin. Drug Dev. Ind. Pharm. 19, 701–712 (1993)CrossRefGoogle Scholar
  49. 49.
    Ahn, H.J., Kim, K.M., Choi, S.J., Kim, C.K.: Effects of cyclodextrin derivatives on bioavailability of ketoprofen. Drug Dev. Ind. Pharm. 23, 397–401 (1997)CrossRefGoogle Scholar
  50. 50.
    Chowdary, K.P.R., Nalluri, B.N.: Nimesulide and beta-cyclodextrin inclusion complexes: physicochemical characterization and dissolution rate studies. Drug Dev. Ind. Pharm. 26, 1217–1220 (2000)CrossRefGoogle Scholar
  51. 51.
    Pose-Vilarnovo, B., Perdomo-Lopez, I., Echezarreta-Lopez, M., Schroth-Pardo, P., Estrada, E., Torres-Labandeira, J.J.: Improvement of water solubility of sulfamethizole through its complexation with β- and hydroxypropyl-β-cyclodextrin—characterization of the interaction in solution and in solid state. Eur. J. Pharm. Sci. 13, 325–331 (2001)CrossRefGoogle Scholar
  52. 52.
    Lotter, J., Krieg, H.M., Keizer, K., Breytenbach, J.C.: The influence of beta-cyclodextrin on the solubility of chlorthalidone and its enantiomers. Drug Dev. Ind. Pharm. 25, 879–884 (1999)CrossRefGoogle Scholar
  53. 53.
    Askrabic, J.M., Rajic, D.S., Tasic, L., Djuric, S., Kasa, P., Hodi, K.P.: Etodolac and solid dispersion with β-cyclodextrin. Drug Dev. Ind. Pharm. 23, 1123–1129 (1997)CrossRefGoogle Scholar
  54. 54.
    Chowdary, K.P.R., Rao, S.S.: Investigation of dissolution of itraconazole by complexation with β-, and hydroxypropyl-β cyclodextrins. Indian J. Pharm. Sci. 63, 438–441 (2001)Google Scholar
  55. 55.
    Arias, M.J., Moyano, J.R., Munoz, P., Gines, J.M., Justo, A., Giordano, F.: Study of omeprazole-gamma-cyclodextrin complexation in the solid state. Drug Dev. Ind. Pharm. 26, 253–259 (2000)CrossRefGoogle Scholar
  56. 56.
    Uekama, K., Fujinaga, T., Hirayama, F., Otagiri, M., Yamasaki, M., Seo, H., Hashimoto, T., Tsuruoka, M.: Improvement of the oral bioavailability of digitalis glycosides by cyclodextrin complexation. J. Pharm. Sci. 72, 1338–1341 (1983)CrossRefGoogle Scholar
  57. 57.
    Kang, J., Kumar, V., Yang, D., Chowdhury, P.R., Hohl, R.J.: Cyclodextrin complexation: influence on the solubility, stability, and cytotoxicity of camptothecin, an antineoplastic agent. Eur. J. Pharm. Sci. 15, 163–170 (2002)CrossRefGoogle Scholar
  58. 58.
    Bettinetti, G., Gazzaniga, A., Mura, P., Giordano, F., Setti, M.: Thermal behavior and dissolution properties of naproxen in combinations with chemically modified beta-cyclodextrins. Drug Dev. Ind. Pharm. 18, 39–53 (1992)CrossRefGoogle Scholar
  59. 59.
    Nagase, Y., Hirata, M., Wada, K., Arima, H., Hirayama, F., Irie, T., Kikuchi, M., Uekama, K.: Improvement of some pharmaceutical properties of DY-9760e by sulfobutyl ether beta-cyclodextrin. Int. J. Pharm. 229, 163–172 (2001)CrossRefGoogle Scholar
  60. 60.
    Loftsson, T., Peterson, D.S.: Cyclodextrin solubilization of ETH-615, a zwitterionic drug. Drug Dev. Ind. Pharm. 24, 365–370 (1998)CrossRefGoogle Scholar
  61. 61.
    McCandless, R., Yalkowsky, S.H.: Effect of hydroxypropyl-betacyclodextrin and pH on the solubility of levemopamil HCl. J. Pharm. Sci. 87, 1639–1642 (1998)CrossRefGoogle Scholar
  62. 62.
    Castillo, J.A., Canales, J.P., Garcia, J.J., Lastres, J.L., Bolas, F., Torrado, J.J.: Preparation and characterization of albendazole beta-cyclodextrin complexes. Drug Dev. Ind. Pharm. 25, 1241–1248 (1999)CrossRefGoogle Scholar
  63. 63.
    Arima, H., Yunomae, K., Miyake, K., Irie, T., Hirayama, F., Uekama, K.: Comparative studies of the enhancing effects of cyclodextrins on the solubility and oral bioavailability of tacrolimus in rats. J. Pharm. Sci. 90, 690–701 (2001)CrossRefGoogle Scholar
  64. 64.
    Zhao, L., Li, P., Yalkowsky, S.H.: Solubilization of fluasterone. J. Pharm. Sci. 88, 967–969 (1999)CrossRefGoogle Scholar
  65. 65.
    Kaukonen, A.M., Lennernas, H., Mannermaa, J.P.: Water-soluble beta cyclodextrin in paediatric oral solutions of spiranolactone: preclinical evalution of spiranolactone bioavailability from solutions of beta cyclodextrin derivatives in rats. J. Pharm. Pharmacol. 50, 611–619 (1998)Google Scholar
  66. 66.
    Jain, A.C., Adeyeye, M.C.: Hygroscopicity, phase solubility and dissolution of various substituted sulfobutylether beta-cyclodextrins (SBE) and danazol-SBE inclusion complexes. Int. J. Pharm. 212, 177–186 (2001)CrossRefGoogle Scholar
  67. 67.
    Londhe, V., Nagarsenker, M.: Comparison between Hydroxypropyl-β-cyclodextrin and polyvinyl pyrrolidine as carriers for carbamazepine solid dispersions. Indian J. Pharm. Sci. 61, 237–240 (1999)Google Scholar
  68. 68.
    Loftsson, T., Stefánsson, E.: Effect of cyclodextrins on topical drug delivery to the eye. Drug Dev. Ind. Pharm. 23, 473–481 (1997)CrossRefGoogle Scholar
  69. 69.
    Van Dorne, H.: Interaction between cyclodextrins and ophthalmic drugs. Eur. J. Pharm. Biopharm. 39, 133–139 (1993)Google Scholar
  70. 70.
    Uekama, K., Hirayama, F., Arima, H.: Recent aspect of cyclodextrin-based drug delivery system. J. Incl. Phenom. Macrocycl. Chem. 56, 3–8 (2006)CrossRefGoogle Scholar
  71. 71.
    Davis, M.E., Brewster, M.E.: Cyclodextrin-based pharmaceutics: past, present and future. Nat. Rev. Drug Discov. 3, 1023–1035 (2004)CrossRefGoogle Scholar
  72. 72.
    Uekama, K.: Design and evaluation of cyclodextrin-based drug formulation. Chem. Pharm. Bull. 52, 900–915 (2004)CrossRefGoogle Scholar
  73. 73.
    Miyake, K., Arima, H., Hiramaya, F.: Improvement of solubility and oral bioavailability of rutin by complexation with 2-hydroxypropyl-β-cyclodextrin. Pharm. Dev. Technol. 5, 399–407 (2000)CrossRefGoogle Scholar
  74. 74.
    Memisoglu, E., Bochot, A., Sen, M., Charon, D., Duchene, D., Hincal, A.A.: Amphiphilic beta-cyclodextrins modified on the primary face: synthesis, characterization, and evaluation of their potential as novel excipients in the preparation of nanocapsules. J. Pharm. Sci. 91, 1214–1224 (2002)CrossRefGoogle Scholar
  75. 75.
    Okimoto, K., Ohike, A., Ibuki, R., Ohnishi, N., Rajewski, R.A., Stella, V.J., Irie, T., Uekama, K.: Design and evaluation of an osmotic pump tablet (OPT) for chlorpromazine using (SBE)7 m-beta-CD. Pharm. Res. 16, 549–554 (1999)CrossRefGoogle Scholar
  76. 76.
    Kamada, M., Hirayama, F., Udo, K., Yano, H., Arima, H., Uekama, K.: Cyclodextrin conjugate-based controlled release system: repeated- and prolonged-releases of ketoprofen after oral administration in rats. J. Control. Release 82, 407–416 (2002)CrossRefGoogle Scholar
  77. 77.
    Hwang, S.J., Bellocq, N.C., Davis, M.E.: Effects of structure of β-cyclodextrin-containing polymers on gene delivery. Bioconjug. Chem. 12, 280–290 (2001)CrossRefGoogle Scholar
  78. 78.
    Gonzalez, H., Hwang, S.J., Davis, M.E.: New class of polymers for the delivery of macromolecular therapeutics. Bioconj. Chem. 10, 1068 (1999)CrossRefGoogle Scholar
  79. 79.
    Hwang, S.J., Bellocq, N.C., Davis, M.E.: Effects of Structure of beta-cyclodextrin-containing polymers on gene delivery. Bioconj. Chem. 12(2), 280–290 (2001)CrossRefGoogle Scholar
  80. 80.
    Pun, S.H., Davis, M.E.: Development of a non-viral gene delivery vehicle for systemic application. Bioconj. Chem. 13, 630 (2002)CrossRefGoogle Scholar
  81. 81.
    Kihara, F., Arima, H., Tsutsumi, T., Hirayama, F., Uekama, K.: Effects of structure of polyamidoamine dendrimer on gene transfer efficiency of the dendrimer conjugate with alpha-cyclodextrin. Bioconjug. Chem. 13, 1211–1219 (2002)CrossRefGoogle Scholar
  82. 82.
    Nicolazzi, C., Venard, V., Le Faou, A., Finance, C.: In vitro antiviral activity of the gancyclovir complexed with beta cyclodextrin on human cytomegalovirus strains. Antiviral Res. 54, 121–127 (2002)CrossRefGoogle Scholar
  83. 83.
    Blanchard, J., Ugwu, S.O., Bhardwaj, R., Dorr, R.T.: Development and testing of an improved of phenytoin using 2-hydroxypropyl-betacyclodextrin. Pharm. Dev. Technol. 5, 333–338 (2000)CrossRefGoogle Scholar
  84. 84.
    Scalia, S., Villani, S., Casolari, A.: Inclusion complexation of the sunscreening agent 2-ethyl hexyl-p-dimethyl aminobenzoate with hydroxypropyl-β-cyclodextrin: effect on photostability. J. Pharm. Pharmacol. 51, 1367–1374 (1999)CrossRefGoogle Scholar
  85. 85.
    Loftsson, T., Jarvinen, T.: Cyclodextrins in ophthalmic drug delivery. Adv. Drug Deliv. Rev. 36, 59–79 (1999)CrossRefGoogle Scholar
  86. 86.
    Ueda, H., Ou, D., Endo, T., Nagase, H., Tomono, K., Nagai, T.: Evaluation of a sulfobutyl ether beta-cyclodextrin as a solubilizing/stabilizing agent for several drugs. Drug Dev. Ind. Pharm. 24, 863–867 (1998)CrossRefGoogle Scholar
  87. 87.
    Lutka, A., Koziara, J.: Interaction of trimeprazine with cyclodextrins in aqueous solution. Chem. Pharm. Bull. 57, 369–374 (2000)Google Scholar
  88. 88.
    Lutka, A.: Investigation of interaction of promethazine with cyclodextrins in aqueous solution. Acta Pol. Pharm. 59, 45–51 (2002)Google Scholar
  89. 89.
    Babu, R., Pandit, J.K.: Effect of aging on the dissolution stability of glibenclamide/beta cyclodextrin complex. Drug Dev. Ind. Pharm. 25, 1215–1219 (1999)CrossRefGoogle Scholar
  90. 90.
    Cwiertnia, B., Hladon, T., Stobiecki, M.: Stability of diclofenac sodium in the inclusion complex in the beta cyclodextrin in the solid state. J. Pharm. Pharmacol. 51, 1213–1218 (1999)CrossRefGoogle Scholar
  91. 91.
    Li, J., Guo, Y., Zografi, G.: The solid-state stability of amorphous quinapril in the presence of beta-cyclodextrins. J. Pharm. Sci. 91, 229–243 (2002)CrossRefGoogle Scholar
  92. 92.
    Croyle, M.A., Cheng, X., Wilson, J.M.: Development of formulations that enhance physical stability of viral vectors for gene therapy. Gene Ther. 8, 1281–1290 (2001)CrossRefGoogle Scholar
  93. 93.
    Singla, A.K., Garg, A., Aggarwal, D.: Paclitaxel and its formulations. Int. J. Pharm. 235, 179–192 (2002)CrossRefGoogle Scholar
  94. 94.
    McCormack, B., Geegoriadis, G.: Drugs-in-cyclodextrins-in liposomes: a novel concept in drug delivery. Int. J. Pharm. 112, 249–258 (1994)CrossRefGoogle Scholar
  95. 95.
    McCormack, B., Gregoriadis, G.J.: Entrapment of cyclodextrin drug complexes into liposomes: potential advantages in drug delivery. Drug Target. 2, 449–454 (1994)CrossRefGoogle Scholar
  96. 96.
    McCormack, B., Gregoriadis, G.: Comparative studies of the fate of free and liposome-entrapped hydroxypropyl-/3-cyclodextrin/drug complexes after intravenous injection into rats: implications in drug delivery. Biochim. Biophys. Acta 1291, 237–244 (1996)Google Scholar
  97. 97.
    McCormack, B., Gregoriadis, G.: Drugs-in-cyclodextrins-in-liposomes: an approach to controlling the fate of water insoluble drugs in vivo. Int. J. Pharm. 162, 59–69 (1998)CrossRefGoogle Scholar
  98. 98.
    Fatouros, D.G., Hatzidimitriu, K., Antimisiaris, S.G.: Liposomes encapsulating prednisolone–cyclodextrin complexes: comparison of membrane integrity and drug release. Eur. J. Pharm. Sci. 13, 287–296 (2001)CrossRefGoogle Scholar
  99. 99.
    Skalko, N., Brandl, M., Ladan, M.B., Grid, J.F., Genjak, I.J.: Liposomes with nifedipine and nifedipine–cyclodextrin complex: calorimetrical. Eur. J. Pharm. Sci. 4, 359–366 (1996)CrossRefGoogle Scholar
  100. 100.
    Skalko-Basnet, N., Pavelic, Z., Becirevic-Lacan, M.: Liposomes containing drug and cyclodextrin prepared by the one-step spray-drying method. Drug Dev. Ind. Pharm. 26, 1279–1284 (2000)CrossRefGoogle Scholar
  101. 101.
    Loukas, Y.L., Jayasekera, P., Gregoriadis, G.: Novel liposome-based multicomponent systems for the protection of photolabile agents. Int. J. Pharm. 117, 85–94 (1995)CrossRefGoogle Scholar
  102. 102.
    Loukas, Y.L., Vraka, V., Gregoriadis, G.: Drugs, in cyclodextrins, in liposomes: a novel approach to the chemical stability of drugs sensitive to hydrolysis. Int. J. Pharm. 162, 137–142 (1998)CrossRefGoogle Scholar
  103. 103.
    Sukegawa, T., Furuike, T., Niikura, K., Yamagishi, A., Monde, K., Nishimura, S.: Erythrocyte-like liposomes prepared by means of amphiphilic cyclodextrin sulfates. Chem. Commun. 5, 430–431 (2002)CrossRefGoogle Scholar
  104. 104.
    Loftsson, T., Kristmundsdóttir, T., Ingvarsdóttir, K., Ólafsdóttir, B.J., Baldvinsdóttir, J.: Preparation and physical evaluation of microcapsules of hydrophilic drug–cyclodextrin complexes. J. Microencapsul. 9, 375–382 (1992)CrossRefGoogle Scholar
  105. 105.
    Filipovic-Grcic, J., Laan, M.B., Skalko, N., Jalsenjak, I.: Chitosan microspheres of nifedipine and nifedipine–cyclodextrin inclusion complexes. Int. J. Pharm. 135, 183–190 (1996)CrossRefGoogle Scholar
  106. 106.
    Filipovic-Grcic, J., Voinovich, D., Moneghini, M., Becirevic-Lacan, M., Magarotto, L., Jalsenjak, I.: Chitosan microspheres with hydrocortisone and hydrocortisone hydroxypropyl-β-cyclodextrin inclusion complex. Eur. J. Pharm. Sci. 9, 373–379 (2000)CrossRefGoogle Scholar
  107. 107.
    Quaglia, F., De Rosa, G., Granata, E., Ungaro, F., Fattal, E., La Rotonda, M.I.: Feeding liquid, non-ionic surfactant and cyclodextrin affect the properties of insulin-loaded poly (lactide-co-glycolide) microspheres prepared by spray-drying. J. Control. Release 86, 267–278 (2003)CrossRefGoogle Scholar
  108. 108.
    Pariot, N., Levy, F.E., Andry, M.C., Levy, M.C.: Cross-linked betacyclodextrin microcapsules.II. Retarding effect on drug release through semi-permeable membranes. Int. J. Pharm. 232, 175–181 (2002)CrossRefGoogle Scholar
  109. 109.
    Duchênea, D., Ponchel, G., Wouessidjewe, D.: Cyclodextrins in targeting Application to nanoparticles. Adv. Drug Del. Rev. 36, 29–40 (1999)CrossRefGoogle Scholar
  110. 110.
    Memisoglu, E., Bochot, A., Sen, M., Duchene, D., Hıncal, A.A.: Non-surfactant nanospheres of progesterone inclusion complexes with amphiphilic β-cyclodextrins. Int. J. Pharm. 251, 143–153 (2003)CrossRefGoogle Scholar
  111. 111.
    Silveira, M.A., Ponchel, G., Puisieux, F., Duchene, D.: Combined poly (isobutylcyanoacrylate) and cyclodextrins nanoparticles for enhancing the encapsulation of lipophilic drugs. Pharm. Res. 15, 1051–1055 (1998)CrossRefGoogle Scholar
  112. 112.
    Silveira, A.M.: Formulation et caractérisation de nanoparticules combinées de poly(cyanoacrylate d’isobutyle) et de cyclodextrines destinées à l’admininistration de principes actifs faiblement solubles dans l’eau. Thesis, University of Paris XI (1998)Google Scholar
  113. 113.
    Boudad, H., Legrand, P., Lebas, G., Cheron, M., Duchene, D., Ponchel, G.: Combined hydroxypropyl-beta-cyclodextrin and poly (alkylcyanoacrylate) nanoparticles intended for oral administration of saquinavir. Int. J. Pharm. 218, 113–124 (2001)CrossRefGoogle Scholar
  114. 114.
    Cavalli, R., Peira, E., Caputo, O., Gasco, M.R.: Solid lipid nanoparticles as carriers of hydrocortisone and progesterone complexes with betacyclodextrins. Int. J. Pharm. 182, 59–69 (1999)CrossRefGoogle Scholar
  115. 115.
    Memisoglu, E., Bochot, A., Ozalp, M., Sen, M., Duchene, D., Hincal, A.A.: Direct formation of nanospheres from amphiphilic beta-cyclodextrin inclusion complexes. Pharm. Res. 20, 117–125 (2003)CrossRefGoogle Scholar
  116. 116.
    National Institute of Health: NIH Consens Statement Online. Sunlight, Ultraviolet Radiation, and the Skin. Accessed 6 Feb. 2000 (1989)
  117. 117.
    Fenyvesi, É., Otta, K., Kolbe, I., Novák, C., Szejtli, J.: Cyclodextrin complexes of UV filters. J. Incl. Phenom. Macrocycl. Chem. 48, 117–123 (2004)CrossRefGoogle Scholar
  118. 118.
    Schwack, W., Rudolph, T.: Photochemistry of dibenzoylmethane UV-A filters. J. Photochem. Photobiol. B Biol. 28, 229–234 (1995)CrossRefGoogle Scholar
  119. 119.
    Scalia, S., Villani, S., Scatturin, A., Vandelli, M.A., Forni, F.: Complexation of the sunscreen agent, butyl-methoxydibenzoylmethane, with hydroxypropyl-β-cyclodextrin. Int. J. Pharm. 175, 205–213 (1998)CrossRefGoogle Scholar
  120. 120.
    Tarras-Wahlberg, N., Stenhagen, G., Larkö, O., Rosén, A., Wennberg, A.M., Wennerström, O.: Changes in ultraviolet absorption of sunscreens after ultraviolet irradiation. J. Invest. Dermatol. 113, 547–553 (1999)CrossRefGoogle Scholar
  121. 121.
    Chatelain, E., Gabard, B.: Photostabilization of butyl methoxydibenzoylmethane (Avobenzone) and ethylhexyl methoxycinnamate by bisethylhexyloxyphenol methoxyphenyl triazine (Tinosorb S), a new UV broadband filter. Photochem. Photobiol. 74, 401–406 (2001)CrossRefGoogle Scholar
  122. 122.
    Scalia, S., Molinari, A., Casolari, A., Maldotti, A.: Complexation of the sunscreen agent, phenylbenzimidazole sulphonic acid with cyclodextrins: effect on stability and photo-induced free radical formation. Eur. J. Pharm. Sci. 22, 241–249 (2004)CrossRefGoogle Scholar
  123. 123.
    Scalia, S., Tursilli, R., Sala, N., Iannuccelli, V.: Encapsulation in lipospheres of the complex between butyl methoxydibenzoylmethane and hydroxypropyl-β-cyclodextrin. Int. J. Pharm. 320, 79–85 (2006)CrossRefGoogle Scholar
  124. 124.
    Lo Nostro, P., Fratoni, L., Baglioni, P.: Modification of a cellulosic fabric with β-cyclodextrin for textile finishing applications. J. Incl. Phenom. Macrocycl. Chem. 44, 423–427 (2002)CrossRefGoogle Scholar
  125. 125.
    Martel, B., Morcellet, M., Ruffin, D., Vinet, F., Weltrowski, M.: Capture and controlled release of fragrances by CD finished textiles. J. Incl. Phenom. Macrocycl. Chem. 44, 439–442 (2002)CrossRefGoogle Scholar
  126. 126.
    Scalia, S., Tursilli, R., Bianchi, A., Lo Nostro, P., Bocci, E., Ridi, F., Baglioni, P.: Incorporation of the sunscreen agent, octyl methoxycinnamate in a cellulosic fabric grafted with β-cyclodextrin. Int. J. Pharm. 308, 155–159 (2006)CrossRefGoogle Scholar
  127. 127.
    Reuscher, H., Hinsenkorn, R.: Cavasol W7 MCT—new ways in surface modification. J. Incl. Phenom. Mol. Recogn. Chem. 25, 191–196 (1996)CrossRefGoogle Scholar
  128. 128.
    Liu, Y.Y., Fan, X.D., Hu, H., Tang, Z.H.: Release of chlorambucil from poly(N-isopropylacrylamide) hydrogels with β-cyclodextrin moieties. Macromol. Biosci. 4, 729–736 (2004)CrossRefGoogle Scholar
  129. 129.
    Liu, Y.Y., Fan, X.D., Kang, T., Sun, L.: A cyclodextrin microgel for controlled release driven by inclusion effects. Macromol. Rapid Commun. 25, 1912–1916 (2004)CrossRefGoogle Scholar
  130. 130.
    Kanjickal, D., Lopina, S., Evancho-Chapman, M.M., Schmidt, S., Donovan, D.: Improving delivery of hydrophobic drugs from hydrogels through cyclodextrins. J. Biomed. Mater. Res. 74A, 454–460 (2005)CrossRefGoogle Scholar
  131. 131.
    Liu, Y.Y., Fan, X.D., Zhao, Y.B.: Synthesis and characterization of a poly(N isopropylacrylamide) with β-cyclodextrin as pendant groups. J. Polym. Sci. A Polym. Chem. 43, 3516–3524 (2005)CrossRefGoogle Scholar
  132. 132.
    Siemoneit, U., Schmitt, C., Alvarez-Lorenzo, C., Luzardo, A., Otero-Espinar, F., Concheiro, A., Blanco-Mendez, J.: Acrylic/cyclodextrin hydrogels with enhanced drug loading and sustained release capability. Int. J. Pharm. 312, 66–74 (2006)CrossRefGoogle Scholar
  133. 133.
    Rodriguez-Tenreiro, C., Alvarez-Lorenzo, C., Rodriguez-Perez, A., Concheiro, A., Torres-Labandeira, J.J.: Estradiol sustained release from high affinity cyclodextrin hydrogels. Eur. J. Pharm. Biopharm. 66, 55–62 (2007)CrossRefGoogle Scholar
  134. 134.
    Higashi, T., Hirayama, F., Arima, H., Uekama, K.: Polypseudorotaxanes of pegylated insulin with cyclodextrins: application to sustained release system. Bioorg. Med. Chem. Lett. 17(7), 1871–1874 (2007)CrossRefGoogle Scholar
  135. 135.
    Cavalli, R., Trotta, F., Tumiatti, W.: Cyclodextrin-based nanosponges for drug delivery. J. Incl. Phenom. Macrocycl. Chem. 56, 209–213 (2006)CrossRefGoogle Scholar
  136. 136.
    Woodley, J.F.: Liposomes for oral administration of drugs. Crit. Rev. Ther. Drug Carrier Syst. 2, 1–18 (1985)Google Scholar
  137. 137.
    Mayer, C.: Nanocapsules as drug delivery systems. Int. J. Artif. Organs 28, 1163–1171 (2005)Google Scholar
  138. 138.
    Bummer, P.M.: Physical chemical considerations of lipid-based oral drug delivery—solid lipid nanoparticles. Crit. Rev. Ther. Drug Carrier Syst. 21, 1–20 (2004)CrossRefGoogle Scholar
  139. 139.
    Uner, M.: Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): their benefits as colloidal drug carrier systems. Pharmazie 61, 375–386 (2006)Google Scholar
  140. 140.
    Bochot, A., Trichard, L., Le Bas, G., Alphandary, H., Grossiord, J.L., Duchêne, D., Fattal, E.: α-cyclodextrin/oil beads: an innovative self-assembling system. Int. J. Pharm. 339, 121–129 (2007)CrossRefGoogle Scholar
  141. 141.
    Trichard, L., Fattal, E., Besnard, M., Bochot, A.: α-cyclodextrin/oil beads as a new carrier for improving the oral bioavailability of lipophilic drugs. J. Control. Release 122, 47–53 (2007)CrossRefGoogle Scholar
  142. 142.
    Glass, J.E. (ed.): Associative Polymers in Aqueous Solutions. ACS Symp. Am. Chem. Soc, Washington DC (2000)Google Scholar
  143. 143.
    Landoll, L.M.: Nonionic polymer surfactants. J. Polym. Sci. Polym. Chem. Ed. 20, 443–455 (1982)CrossRefGoogle Scholar
  144. 144.
    Rouzes, C., Durand, A., Leonard, M., Dellacherie, E.: Surface activity and emulsification properties of hydrophobically modified dextrans. J. Colloid Interface Sci. 253, 217–223 (2002)CrossRefGoogle Scholar
  145. 145.
    Rotureau, E., Dellacherie, E., Durand, A.: Viscosity of aqueous solutions of polysaccharides and hydrophobically modified polysaccharides: application of Fedors equation. Eur. Polym. J. 42, 1086–1092 (2006)CrossRefGoogle Scholar
  146. 146.
    Esquenet, C., Bulher, E.: Phase behavior of associating polyelectrolyte polysaccharides. 1. Aggregation process in dilute solution. Macromolecules 34, 5287–5294 (2001)CrossRefGoogle Scholar
  147. 147.
    Esquenet, C., Terech, P., Boué, F., Buhler, E.: Structural and rheological properties of hydrophobically modified polysaccharide associative networks. Langmuir 20, 3583–3592 (2004)CrossRefGoogle Scholar
  148. 148.
    Duval-Terrie, C., Huguet, J., Muller, G.: Self-assembly and hydrophobic clusters of amphiphilic polysaccharides. Colloids Surf. A Physicochem. Eng. Asp. 220, 105–115 (2003)CrossRefGoogle Scholar
  149. 149.
    Henni, W., Deyme, M., Stchakovsky, M., Le Cerf, D., Picton, L., Rosilio, V.: Aggregation of hydrophobically modified polysaccharides in solution and at the air–water interface. J. Colloid Interface Sci. 281, 316–324 (2005)CrossRefGoogle Scholar
  150. 150.
    Harada, A., Kamachi, M.: Complex formation between poly (ethylene glycol) and α-cyclodextrin. Macromolecules 23, 2821–2823 (1990)CrossRefGoogle Scholar
  151. 151.
    Harada, A.: Preparation and structures of supramolecules between cyclodextrins and polymers. Coord. Chem. Rev. 148, 115–133 (1996)CrossRefGoogle Scholar
  152. 152.
    Harada, A.: Construction of supramolecular structures from cyclodextrins, polymers. Carbohydr. Polym. 34, 183–188 (1997)CrossRefGoogle Scholar
  153. 153.
    Huh, K.M., Ooya, T., Lee, W.K., Sasaki, S., Kwon, I.C., Jeong, S.Y., Yui, N.: Supramolecular-structured hydrogels showing a reversible phase transition by inclusion complexation between poly(ethylene glycol) grafted dextran and α-cyclodextrin. Macromolecules 34, 8657–8662 (2001)CrossRefGoogle Scholar
  154. 154.
    Huh, K.M., Cho, Y.W., Chung, H., Kwon, I.C., Jeong, S.Y., Ooya, T., Lee, W.K., Sasaki, S., Yui, N.: Supramolecular hydrogel formation based on inclusion complexation between poly(ethylene glycol)-modified chitosan and α-cyclodextrin. Macromol. Biosci. 4, 92–99 (2004)CrossRefGoogle Scholar
  155. 155.
    Daoud-Mahammed, S., Couvreur, P., Gref, R.: Novel self-assembling nanogels: stability and lyophilisation studies. Int. J. Pharm. 332, 185–191 (2007)CrossRefGoogle Scholar
  156. 156.
    Davis, M.E., Bellocq, N.C.: Cyclodextrin-containing polymers for gene delivery. J. Incl. Phenom. Macrocycl. Chem. 44, 17–22 (2002)CrossRefGoogle Scholar
  157. 157.
    Maestrelli, F., Luísa González-Rodríguez, M., Rabasco, A.M., Mura, P.: Preparation and characterisation of liposomes encapsulating ketoprofen–cyclodextrin complexes for transdermal drug delivery. Int. J. Pharm. 298, 55–67 (2005)CrossRefGoogle Scholar
  158. 158.
    Lee, E.S., Kwon, M.J., Lee, H., Kim, J.J.: Stabilization of protein encapsulated in poly(lactide-co-glycolide) microspheres by novel viscous S/W/O/W method. Int. J. Pharm. 331, 27–37 (2007)CrossRefGoogle Scholar
  159. 159.
    Devarakond, B., Hill, R.A., Liebenberg, W., Brits, M., de Villiers, M.M.: Comparison of the aqueous solubilization of practically insoluble niclosamide by polyamidoamine (PAMAM) dendrimers and cyclodextrins. Int. J. Pharm. 304, 193–209 (2005)CrossRefGoogle Scholar
  160. 160.
    Yu, H., Wei, H., Hou, D., Zhang, A.Y., Feng, Z.G.: Composite hydrogels filled with inclusion complexes made from β-cyclodextrins with poly(propylene glycol) bisamine. Curr. Appl. Phys. 7, e116–e119 (2007)Google Scholar
  161. 161.
    Trapani, A., Laquintana, V., Denora, N., Lopedota, A., Cutrignelli, A., Franco, M., Trapani, G., Liso, G.: Eudragit RS 100 microparticles containing 2-hydroxypropyl-β-cyclodextrin and glutathione: physicochemical characterization, drug release and transport studies. Eur. J. Pharm. Sci. 30, 64–74 (2007)CrossRefGoogle Scholar
  162. 162.
    Maestrelli, F., Garcia-Fuentes, M., Mura, P., Alonso, M.J.: A new drug nanocarrier consisting of chitosan and hydoxypropylcyclodextrin. Eur. J. Pharm. Biopharm. 63, 79–86 (2006)CrossRefGoogle Scholar
  163. 163.
    Lemos-Senna, E., Wouessidjewe, D., Lesieur, S., Duchêne, D.: Preparation of amphiphilic cyclodextrin nanospheres using the emulsification solvent evaporation method. Influence of the surfactant on preparation and hydrophobic drug loading. Int. J. Pharm. 170, 119–128 (1998)CrossRefGoogle Scholar
  164. 164.
    Sajeesh, S., Sharma, C.P.: Cyclodextrin–insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery. Int. J. Pharm. 325, 147–154 (2006)CrossRefGoogle Scholar
  165. 165.
    Cappello, B., De Rosa, G., Giannini, L., La Rotonda, M.I., Mensitieri, G., Miro, A., Quaglia, F., Russo, R.: Cyclodextrin-containing poly(ethyleneoxide) tablets for the delivery of poorly soluble drugs: potential as buccal delivery system. Int. J. Pharm. 319, 63–70 (2006)CrossRefGoogle Scholar
  166. 166.
    Ungaro, F., De Rosa, G., Miro, A., Quaglia, F., La Rotonda, M.I.: Cyclodextrins in the production of large porous particles: development of dry powders for the sustained release of insulin to the lungs. Eur. J. Pharm. Sci. 28, 423–432 (2006)CrossRefGoogle Scholar
  167. 167.
    Rosa, G.D., Larobina, D., La Rotonda, M.I., Musto, P., Quaglia, F., Ungaro, F.: How cyclodextrin incorporation affects the properties of protein-loaded PLGA-based microspheres: the case of insulin/hydroxypropyl-β-cyclodextrin system. J. Control. Release 102, 71–83 (2005)CrossRefGoogle Scholar
  168. 168.
    Sortino, S., Mazzagliab, A., Scolaroc, L.M., Merlod, F.M., Valverid, V., Sciortinod, M.T.: Nanoparticles of cationic amphiphilic cyclodextrins entangling anionic porphyrins as carrier-sensitizer system in photodynamic cancer therapy. Biomaterials 27, 4256–4265 (2006)CrossRefGoogle Scholar
  169. 169.
    Gao, H., Yang, Y., Fan, Y., Ma, J.: Conjugates of poly(DL-lactic acid) with ethylenediamino or diethylenetriamino bridged bis(β cyclodextrin) s and their nanoparticles as protein delivery systems. J. Control. Release 112, 301–311 (2006)CrossRefGoogle Scholar
  170. 170.
    Kang, F., Singh, J.: Conformational stability of a model protein (bovine serum albumin) during primary emulsification process of PLGA microspheres synthesis. Int. J. Pharm. 260, 149–156 (2003)CrossRefGoogle Scholar
  171. 171.
    Fundueanua, G., Constantinb, M., Dalpiaza, A., Bortolottia, F., Cortesia, R., Ascenzic, P., Menegattia, E.: Preparation and characterization of starch/cyclodextrin bioadhesive microspheres as platform for nasal administration of Gabexate Mesylate (Foys) in allergic rhinitis treatment. Biomaterials 25, 159–170 (2004)CrossRefGoogle Scholar
  172. 172.
    Memisoglu-Bilensoya, E., Vurala, T.I., Bochotb, A., Renoirb, J.M., Ducheneb, D., Hvncala, A.A.: Tamoxifen citrate loaded amphiphilic h-cyclodextrin nanoparticles: In vitro characterization and cytotoxicity. J. Control. Release 104, 489–496 (2005)Google Scholar
  173. 173.
    Francois, M., Snoeckx, E., Putteman, P., Wouters, F., Proost, E.D., Delaet, U., Peeters, J., Brewster, M.E.: A mucoadhesive, cyclodextrin-based vaginal cream formulation of itraconazole. AAPS PharmSci. 5(1), E5 (2003)Google Scholar
  174. 174.
    Wongmekiat, A., Yoshimatsu, S., Tozuka, Y., Moribe, K., Yamamoto, K.: Investigation of drug nanoparticle formation by co-grinding with cyclodextrins: studies for indomethacin, furosemide and naproxen. J. Incl. Phenom. Macrocycl. Chem. 56, 29–32 (2006)CrossRefGoogle Scholar
  175. 175.
    Nishimura, K., Hidaka, R., Hirayama, F., Arima, H., Uekama, K.: Improvement of dispersion and release properties of nifedipine in suppositories by complexation with 2-hydroxypropyl-β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 56, 85–88 (2006)CrossRefGoogle Scholar
  176. 176.
    Skiba, M., Bounoure, F., Barbot, C., Arnaud, P., Skiba, M.: Development of cyclodextrins microspheres for pulmonary drug delivery. J. Pharm. Pharm. Sci. 8(3), 409–418 (2005)Google Scholar
  177. 177.
    Evrarda, B., Bertholeta, P., Guedersc, M., Flamentb, M.P., Piela, G., Delattrea, L., Gayotb, A., Letermeb, P., Foidartc, J.M., Cataldo, D.: Cyclodextrins as a potential carrier in drug nebulization. J. Control. Release 96, 403–410 (2004)CrossRefGoogle Scholar
  178. 178.
    Okimoto, K., Ohike, A., Ibuki, R., Aoki, O., Ohnishi, N., Rajewski, R.A., Stellab, V.J., Irie, T., Uekama, K.: Factors affecting membrane-controlled drug release for an osmotic pump tablet (OPT) utilizing (SBE)-β-CD as both a 7m solubilizer and osmotic agent. J. Control. Release 60, 311–319 (1999)CrossRefGoogle Scholar
  179. 179.
    Wang, J., Cai, Z.: Incorporation of the antibacterial agent, miconazole nitrate into a cellulosic fabric grafted with β-cyclodextrin. Carbohydr. Polym. (in press). doi: 10.1016/j.carbpol.2007.10.019 (2008)
  180. 180.
    Smith, J.S., MacRaea, R.J., Snowden, M.J.: Effect of SBE7-b-cyclodextrin complexation on carbamazepine release from sustained release beads. Eur. J. Pharm. Biopharm. 60, 73–80 (2005)CrossRefGoogle Scholar
  181. 181.
    Anadolu, R.Y., Sen, T., Tarimci, N., Birol, A., Erdem, C.: Improved efficacy and tolerability of retinoic acid in acne vulgaris: a new topical formulation with cyclodextrin complex. JEADV 18, 416–421 (2004)Google Scholar
  182. 182.
    Herrmann, S., Winter, G., Mohl, S., Siepmann, F., Siepmann, J.: Mechanisms controlling protein release from lipidic implants: effects of PEG addition. J. Control. Release 118, 161–168 (2007)CrossRefGoogle Scholar
  183. 183.
    Mora, P.C., Cirri, Æ.M., Mura, Æ.P.: Development of a sustained-release matrix tablet formulation of DHEA as ternary complex with α-cyclodextrin and glycine. J. Incl. Phenom. Macrocycl. Chem. 57(1–4), 699–704 (2007)CrossRefGoogle Scholar
  184. 184.
    Maestrelli, F., Corti, G., Mura, P., Cirri, M., Rangoni, C.: Development of fast-dissolving tablets of flurbiprofen–cyclodextrin complexes. Drug Dev. Ind. Pharm. 31, 697–707 (2005)CrossRefGoogle Scholar
  185. 185.
    Martin, R., Nchez, I.S., Cao, R., Rieumont, J.: Solubility and kinetic release studies of naproxen and ibuprofen in soluble epichlorohydrin-β-cyclodextrin polymer. Supramol. Chem. 18(8), 627–631 (2006)CrossRefGoogle Scholar
  186. 186.
    Jug, M., Bećirević-Laćan, M., Kwokal, A., Cetina-Cizmek, B.: Influence of cyclodextrin complexation on piroxicam gel formulations. Acta Pharm. 55, 223–236 (2005)Google Scholar
  187. 187.
    Babu, R.J., Pandit, J.K.: Effect of cyclodextrins on the complexation and transdermal delivery of bupranolol through rat skin. Int. J. Pharm. 271, 155–165 (2004)CrossRefGoogle Scholar
  188. 188.
    Dias, M.M.R., Raghavan, S.L., Pellett, M.A., Hadgraft, J.: The effect of β-cyclodextrins on the permeation of diclofenac from supersaturated solutions. Int. J. Pharm. 263, 173–181 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Institute of PharmacyPt. Ravishankar Shukla UniversityRaipurIndia

Personalised recommendations