Advertisement

Separation of nanocarbons by molecular recognition

  • Naoki KomatsuEmail author
Review Article

Abstract

This review article surveys the author’s work during the last ten years. The research works have been carried out in the interdisciplinary fields of supramolecular, synthetic organic and materials chemistry. This review consists of the following 5 topics; (1) novel synthetic methodology for constructing benzyl ether-linked oxacyclophanes and oxacalixarenes by reductive coupling reactions, (2) preferential precipitation of C70 over C60 with p-halohomooxacalix[3]arenes prepared by the above reductive coupling reactions, (3) highly practical purification of fullerenes by filtration through activated carbon thin layer, (4) host-guest chemistry of C60 and C70 with porphyrin monomers and dimers in solution, and (5) optical resolution of carbon nanotubes through preferential complexation with chiral diporphyrin nanotweezers. New terminology is also proposed in the definition of the structures and stereochemistry of carbon nanotubes.

Keywords

Carbon nanotubes Fullerenes Materials chemistry Supramolecular chemistry Synthetic chemistry 

Abbreviations

AC

Activated carbon

Bn

Benzyl

CD

Circular dichroism

CNT

Carbon nanotube

DBU

1,8-Diazabicyclo[5.4.0]undec-7-ene

DWNT

Double-walled carbon nanotube

GPC

Gel permeation chromatography

HRTEM

High-resolution transmission electron microscopy

MWNT

Multi-walled carbon nanotube

Octt

1,1,3,3-Tetramethylbutyl

SWNT

Single-walled carbon nanotube

SDBS

Sodium dodecylbenzenesulfonate

TMB

1,2,4-Trimethylbenzene

Notes

Acknowledgements

The author thanks the organizing committee of Host-Guest and Supramolecular Chemistry Society, Japan for giving him the HGCS Japan Award of Excellence 2007 and the opportunity of writing this review. He is also grateful to Professors Atsuhiro Osuka (Kyoto University), Takahide Kimura (Shiga University of Medical Science), Keiji Maruoka (Kyoto University), Kazumi Matsushige (Kyoto University), Akio Toshimitsu (Kyoto University), Shuji Aonuma (Osaka Electro-Communication University), Yoshihiro Matano (Kyoto University) Tadashi Mori (Osaka University), Tomonari Wakabayashi (Kinki University) and Tetsuo Ishida (Shiga University of Medical Science), and Professor Emeritus Hitomi Suzuki (Kyoto University), Dr. Naoki Yoshimoto, Mr. Takeyuki Itabashi and Dr. Shinji Yamada (Hitachi, Ltd.) for their valuable suggestions and encouragement. He acknowledges Professor Hidemitsu Uno, Ms. Akiko Fujimoto, Messrs. Kazuyuki Tominaga and Masakazu Hashimoto (Ehime University) for the preparation of porphyrin dimers, Messrs. Mineyuki Arikawa and Yasuharu Kikuchi (Frontier Carbon Co.) for helpful suggestions for fullerene purification, Dr. Mitsumi Uchida (Osaka Prefecture University) for proofreading his papers, Professor Yasushi Kawai for allowing him to use the CD spectropolarimeter, Mr. Yasushi Nakata and Ms. Ikuko Hamagami (Horiba, Ltd.) for taking photoluminescence spectra, Messrs. Takashi Onozawa and Susumu Kosugiyama (Tokyo Chemical Industry Co., Ltd.) for the assistance of experiments and kind donation of some reagents, and the members in Central Research Laboratory of Shiga University of Medical Science for helping us in various kinds of instrumental analyses. His sincere gratitudes also go to all the collaborators in Kyoto University and Shiga University of Medical Science, in particular, Dr. Xiaobin Peng (Shiga University of Medical Science), Dr. Sumanta Bhattacharya (The University of Burdwan, India), Mr. Naoki Kadota (Kyoto University), Mr. Takanori Shimawaki (NEC Lighting, Ltd.), Dr. Marilyn D. Milton (Indian Institute of Technology, Kharagpur, India), Dr. Tatsuya Takimoto (Shiga University of Medical Science), Dr. A. F. M. Mustafizur Rahman (University of Dhaka, Bangladesh), Dr. Toshiyuki Ohe (Daichi Kasei Co.,Ltd), Dr. Ajoy Kumer Bauri (Bhabha Atomic Research Centre, India) and Dr. Takefumi Chishiro (Kyushu University). His works described here were financially supported by Integrative Industry-Academia Partnership including Kyoto University, NTT Co., Pioneer Co., Hitachi, Ltd., Mitsubishi Chemical Co. and Rohm Co., Ltd., Grant-In-Aid (No 17·05389) from Japan Society for the Promotion of Science, Industrial Technology Research Grant Program in 2005 from New Energy and Industrial Technology Development Organization (NEDO) of Japan and Grant-In-Aid for Research for Young Researchers from Kyoto University-Venture Business Laboratory (KU-VBL).

This is a paper selected for “HGCS Japan Award of Excellence 2007”.

References

  1. 1.
    Kroto, H.W., Health, J.R., O’Brien S.C., Curl, R.F., Smalley, R.E.: C60: buckminsterfullerene. Nature 318, 162–163 (1985)Google Scholar
  2. 2.
    Krätschmer, W., Lamb, L.D., Fostiropoulos, K., Huffman, D.R.: Solid C60: a new form of carbon. Nature 347, 354–358 (1990)Google Scholar
  3. 3.
    Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)Google Scholar
  4. 4.
    Monthioux, M., Kuznetsov, V.L.: Who should be given the credit for the discovery of carbon nanotubes? Carbon 44, 1621–1623 (2006)Google Scholar
  5. 5.
    Boehm, H.P.: The first observation of carbon nanotubes. Carbon 35, 581–584 (1997)Google Scholar
  6. 6.
    Gibson, J.A.E.: Early nanotubes? Nature 359, 369 (1992)Google Scholar
  7. 7.
    Wildgoose, G.G., Banks, C.E., Compton, R.G.: Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications. Small 2, 182–193 (2006)Google Scholar
  8. 8.
    Ando, T.: Carbon materials in 21st century. New Diamond 22, 8 (2006)Google Scholar
  9. 9.
    Iijima, S., Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603–605 (1993)Google Scholar
  10. 10.
    Bethune, D.S., Kiang, C.H., Vries, M.S.d., Gorman, G., Savoy, R., Vazquez, J., Beyers, R.: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605–607 (1993)Google Scholar
  11. 11.
    Komatsu, N.: New synthetic route to homooxacalix[n]arenes via reductive coupling of diformylphenols. Tetrahedron Lett. 42, 1733–1736 (2001)Google Scholar
  12. 12.
    Komatsu, N.: Preferential precipitation of C70 over C60 with p-halohomooxacalix[3]arenes. Org. Biomol. Chem. 1, 204–209 (2003)Google Scholar
  13. 13.
    Komatsu, N.: Highly improved methods for purification of fullerenes applicable to large-scale production. Petrotech 26, 373–378 (2003)Google Scholar
  14. 14.
    Komatsu, N., Kadota, N., Kimura, T., Kikuchi, Y., Arikawa, M.: Remarkable improvement in efficiency of filtration method for fullerene purification. Fullerenes, Nanotubes and Carbon Nanostructures 15, 217–226 (2007)Google Scholar
  15. 15.
    Bhattacharya, S., Shimawaki, T., Peng, X., Ashokkumar, A., Aonuma, S., Kimura, T., Komatsu, N.: Spectroscopic and theoretical investigations on effective and selective complexation between porphyrins and fullerenes. Chem. Phys. Lett. 430, 435–442 (2006)Google Scholar
  16. 16.
    Bhattacharya, S., Tominaga, K., Kimura, T., Uno, H., Komatsu, N.: A new metalloporphyrin dimer: effective and selective molecular tweezers for fullerenes. Chem. Phys. Lett. 433, 395–402 (2007)Google Scholar
  17. 17.
    Bhattacharya, S., Ujihashi, N., Aonuma, S., Kimura, T., Komatsu, N.: Spectral and theoretical studies on effective and selective non-covalent interaction between tetrahexylporphyrins and fullerenes. Spectrochim. Acta A 68, 495–503 (2007)Google Scholar
  18. 18.
    Bhattacharya, S., Hashimoto, M., Fujimoto, A., Kimura, T., Uno, H., Komatsu, N.: Photophysical properties of a novel Ni(II)-diporphyrin in presence of fullerenes: insights from experimental and theoretical studies. Spectrochim. Acta. A. doi: 10.1016/j.saa.2007.12.004
  19. 19.
    Peng, X., Komatsu, N., Bhattacharya, S., Shimawaki, T., Aonuma, S., Kimura, T., Osuka, A.: Optically active single-walled carbon nanotubes. Nature Nanotechnology 2, 361–365 (2007)Google Scholar
  20. 20.
    Peng, X., Komatsu, N., Kimura, T., Osuka, A.: Improved optical enrichment of SWNTs through extraction with chiral nano-tweezers of 2,6-pyridylene-bridged diporphyrins. J. Am. Chem. Soc. 129, 15947–15953 (2007)Google Scholar
  21. 21.
    Komatsu, N.: Optically active carbon nanotubes. New Diam 88, 26–27 (2008)Google Scholar
  22. 22.
    Kataura, H., Kumazawa, Y., Maniwa, Y., Umezu, I., Suzuki, S., Ohtsuka, Y., Achiba, Y.: Optical properties of single-wall carbon nanotubes. Synth. Metals 103, 2555–2558 (1999)Google Scholar
  23. 23.
    Baughman, R.H., Zakhidov, A.A., Heer, W.A.d.: Carbon nanotubes-the route toward applications. Science 297, 787–792 (2002)Google Scholar
  24. 24.
    Komatsu, N., Ishida, J., Suzuki, H.: Bismuth bromide-catalyzed reductive coupling of carbonyl compounds and its application to the synthesis of novel crownophanes. Tetrahedron Lett. 38, 7219–7222 (1997)Google Scholar
  25. 25.
    Komatsu, N., Taniguchi, A., Wada, S., Suzuki, H.: A catalytic deprotection of S,S-, S,O- and O,O-acetals using Bi(NO3)3 · (5H2O under air. Adv. Synth. Catal. 343, 473–480 (2001)Google Scholar
  26. 26.
    Komatsu, N., Taniguchi, A., Uda, M., Suzuki, H.: A novel method for the deprotection of S,S-acetals using air and a catalytic amount of bismuth nitrate. Chem. Commun. 1847–1848 (1996)Google Scholar
  27. 27.
    Komatsu, N., Uda, M., Suzuki, H., Takahashi, T., Domae, T., Wada, M.: Bismuth bromide as an efficient and versatile catalyst for the cyanation and allylation of carbonyl compounds and acetals with organosilicon reagents. Tetrahedron Lett. 38, 7215–7218 (1997)Google Scholar
  28. 28.
    Komatsu, N., Uda, M., Suzuki, H.: Air oxidation of sulfides to sulfoxides using BiBr3-Bi(NO3)3 as a binary catalyst. Chem. Lett. 1229–1230 (1997)Google Scholar
  29. 29.
    Komatsu, N., Uda, M., Suzuki, H.: Bismuth(III) halides and sulfate as highly efficient catalyst for the sulfenylation of carbonyl and related compounds Synlett 984–986 (1995)Google Scholar
  30. 30.
    Komatsu, N.: Bismuth compounds in organic transformations. In: Suzuki H., Matano Y. (eds.) Organobismuth Chemistry, pp. 371–440. Elsevier, Amsterdam (2001)Google Scholar
  31. 31.
    Komatsu, N., Chishiro, T.: Serial synthesis of oxa[3.n]cyclophanes and homooxacalix[n]arenes via reductive homocoupling of arenedialdehydes, and their X-ray structures. J. Chem. Soc., Perkin Trans. 1. 1532–1537 (2001)Google Scholar
  32. 32.
    Komatsu, N., Ohe, T., Matsushige, K.: A highly improved method for purification of fullerenes applicable to large-scale production. Carbon 42, 163–167 (2004)Google Scholar
  33. 33.
    Doyle, M.P., West, C.T., Donnelly, S.J., McOsker C.C.: Silane reductions in acidic media. J. Organomet. Chem. 117, 129 (1976)Google Scholar
  34. 34.
    Kato, J., Iwasawa, N., Mukaiyama, T.: A novel method for the preparation of symmetrical and unsymmetrical ethers. Tritylperchlorate promoted reduction of carbonyl compounds with triethylsilane. Chem. Lett. 743–744 (1985)Google Scholar
  35. 35.
    Sassaman, M.B., Kotian, K.D., Prakash, G.K.S., Olah, G.A.: Genaral ether synthesis under mild acid-free conditions. Trimethylsilyl iodide catalyzed reductive coupling of carbonyl compounds with trialkylsilanes to symmetrical ethers and reductive condensation with alkoxysilanes to unsymmetrical ethers. J. Org. Chem. 52, 4314 (1987)Google Scholar
  36. 36.
    Hatakeyama, S., Mori, H., Kitano, K., Yamada, H., Nishizawa, M.: Efficient reductive etherification of carbonyl compounds with alkoxytrimethylsilanes. Tetrahedron Lett. 35, 4367–4370 (1994)Google Scholar
  37. 37.
    Ogawa, T., Yoshikawa, A., Wada, H., Ogawa, C., Ono, N., Suzuki, H.: Tris(2-methoxyphenyl)bismuthane as a dehydrating agent with high template ability: an efficient single-step synthesis of macrocyclic diesters from diacid anhydrides and glycols. J. Chem. Soc., Chem. Commun. 1407 (1995)Google Scholar
  38. 38.
    Habata, Y., Fujishiro, F., Akabori, S.: Syntheses of armed crown ether-esters using SbPh3 as a template. J. Chem. Soc., Chem. Commun. 2217 (1994)Google Scholar
  39. 39.
    Tsubaki, K., Otsubo, T., Tanaka, K., Fuji, K.: Stepwise construction of some hexahomooxacalix[3]arenes and their conformations in solid state. J. Org. Chem. 63, 3260–3265 (1998)Google Scholar
  40. 40.
    Hampton, P.D., Bencze, Z., Tong, W., Daitch, C.E.: A new synthesis of oxacalix[3]arene macrocycles and alkali-metal-binding studies. J. Org. Chem. 59, 4838–4843 (1994)Google Scholar
  41. 41.
    Zerr, P., Mussrabi, M., Vicens, J.: Isolation and characterization of a new oxacalixarene. Tetrahedron Lett. 32, 1879–1880 (1991)Google Scholar
  42. 42.
    Masci, B., Finelli, M., Varrone, M.: Fine tuning of the cavity size in calixarene-like cyclophanes: a complete series of hoomooxacalix[4]arene ligands for quaternary ammonium ions. Chem. Eur. J. 4, 2018 (1998)Google Scholar
  43. 43.
    Masci, B., Saccheo, S.: Bridged octahomotetraoxacalix[4]arenes from acyclic precursors. Tetrahedron 49, 10739 (1993)Google Scholar
  44. 44.
    Matsumoto, H., Nishio, S., Takeshita, M., Shinkai, S.: Syntheses and ion selectivities of tri-amide derivatives of hexahomotrioxaxcalix[3]arene. Remarkably large metal template effect on the ratio of cone vs. partial-cone conformers. Tetrahedron 51, 4647 (1995)Google Scholar
  45. 45.
    Araki, K., Hashimoto, N., Otsuka, H., Shinkai, S.: Synthesis and ion selectivity of conformers derived from hexahomotrioxacalix[3]arene. J. Org. Chem. 58, 5958 (1993)Google Scholar
  46. 46.
    Araki, K., Inada, K., Otsuka, H., Shinkai, S.: Conformational isomerism in and binding propeties to alkali-matals and an ammonium salt of O-alkylated homooxacalix[3]arenes. Tetrahedron 49, 9465 (1993)Google Scholar
  47. 47.
    Araki, K., Inada, K., Shinkai, S.: Chiral recognition of a-amino acid derivatives with a homooxacalix[3]arene: construction of a pseudo-C2-symmetrical compound from a C3-symmetrical macrocycle. Angew. Chem. Int. Ed. Engl. 35, 72 (1996)Google Scholar
  48. 48.
    Masci, B.: Homooxacalixarenes. 3. Complexation of quaternary ammonium ions by parent Homooxacalixarenes in CDCl3 solution. Tetrahedron 51, 5459 (1995)Google Scholar
  49. 49.
    Takeshita, M., Inokuchi, F., Shinkai, S.: C3-symmetrically-capped homotrioxacalixarene. A preorganized host molecule for inclusion of primary ammonium ions. Tetrahedron Lett. 36, 3341 (1995)Google Scholar
  50. 50.
    Takeshita, M., Shinkai, S.: A selective fluorometric sensing system for guanidinium ion in the presence of primary ammonium ions. Chem. Lett. 1349 (1994)Google Scholar
  51. 51.
    Takeshita, M., Shinkai, S.: Novel fluorometric sensing of ammonium ions by pyrene functionalized homotricalix[3]arene. Chem. Lett. 125 (1994)Google Scholar
  52. 52.
    Daitch, C.E., Hampton, P.D., Duesler, E.N.: Selective binding of group IIIA and lanthanide metals by hexahomotricalix[3]arene macrocycles. J. Am. Chem. Soc. 118, 7769 (1996)Google Scholar
  53. 53.
    Arnaud-Neu, F.: Solution chemistry of lanthanide macrocyclic complexes. Chem. Soc. Rev. 235 (1994)Google Scholar
  54. 54.
    Islam, S.D.-M., Fujitsuka, M., Ito, O., Ikeda, A., Hatano, T., Shinkai, S.: Photoexcited state properties of C60 encapsulated in a water-soluble calixarene. Chem. Lett. 78 (2000)Google Scholar
  55. 55.
    Ikeda, A., Nobukuni, S., Udzu, H., Zhong, Z., Shinkai, S.: A novel [60]fullerene-calixarene conjugate which facilitates self-inclusion of the [60]fullerene moiety into the homooxacalixarene cavity. Eur. J. Org. Chem. 3287 (2000)Google Scholar
  56. 56.
    Ikeda, A., Hatano, T., Kawaguchi, M., Suenaga, H., Shinkai, S.: Water-soluble [60]fullerene-cationic homooxacalix[3]arene complex which is applicable to the photocleavage of DNA. Chem. Commun. 1403 (1999)Google Scholar
  57. 57.
    Ikeda, A., Suzuki, Y., Yoshimura, M., Shinkai, S.: On the prerequisites for the formation of solution complexes from [60]fullerene and calix[n]arenes: a novel allosteric effect between [60]fullerene and metal cations in calix[n]aryl ester complexes. Tetrahedron 54, 2497 (1998)Google Scholar
  58. 58.
    Ikeda, A., Yoshimura, M., Shinkai, S.: Solution complexes formed from C60 and calixarenes. On the importance of the preorganized structure for coorperative interactions. Tetrahedron Lett. 38, 2107 (1997)Google Scholar
  59. 59.
    Atwood, J.L., Barbour, L.J., Nichols, P.J., Raston, C.L., Sandoval, C.A.: Symmetry-aligned supramolecular encapsulation of C60: [C60(L)2], L = p-benzylcalix[5]arene or p-benzylhexahomooxacalix[3]arene. Chem. Eur. J. 5, 990–996 (1999)Google Scholar
  60. 60.
    Tsubaki, K., Tanaka, K., Kinoshita, T., Fuji, K.: Complexation of C60 with hexahomooxacalix[3]arenes and supramolecular structure of complexes in the solid state. Chem. Commun. 895–896 (1998)Google Scholar
  61. 61.
    Odashima, K., Yagi, K., Tohda, K., Umezawa, Y.: Dopamine-selective response in membrane potential by homooxacalix[3]arene triester host molecule incorporated in PVC liquid membrane. Bioorg. Med. Chem. Lett. 9, 2375 (1999)Google Scholar
  62. 62.
    Cragg, P.J., Allen, M.C., Steed, J.W.: A ‘toothpaste tube’ model for iontransport therough trans-membrane channels. Chem. Commun. 553 (1999)Google Scholar
  63. 63.
    Zhong, Z., Ikeda, A., Shinkai, S.: Triple linkage of two homooxacalix[3]arenes creates capsular molecules and self-threaded rotaxanes. J. Am. Chem. Soc. 121, 11906 (1999)Google Scholar
  64. 64.
    Ikeda, A., Yoshimura, M., Tani, F., Naruta, Y., Shinkai, S.: Construction of a homooxacalix[3]arene-based dimeric capsule cross-linked by a Pd-pyridine interaction. Chem. Lett. 587 (1998)Google Scholar
  65. 65.
    Ikeda, A., Yoshimura, M., Udzu, H., Fukuhara, C., Shinkai, S.: Inclusion of [60]fullerene in a homooxacalix[3]arene-based dimeric capsule cross-linked by a Pd(II)-pyridine interaction. J. Am. Chem. Soc. 121, 4296 (1999)Google Scholar
  66. 66.
    Dhawan, B., Gutsche, C.D.: Calixarenes. 10. oxacalixarenes. J. Org. Chem. 48, 1536–1539 (1983)Google Scholar
  67. 67.
    Tanno, T., Mukoyama, Y.: Chemical structure of cyclic oligomers in p-tert-butyl phenol-formaldehyde resins. Netsu Kokasei Jushi 2, 132–139 (1981)Google Scholar
  68. 68.
    Mukoyama, Y., Tanno, T.: By-products of p-tert-butylphenol formaldehyde resin. Org. Coat. Plast. Chem. 40, 894–897 (1979)Google Scholar
  69. 69.
    Hultzsch, K.: Ring-kondensate in alkylphenolharzen. Kunststoffe 52, 19–24 (1962)Google Scholar
  70. 70.
    Tsubaki, K., Mukoyoshi, K., Otsubo, T., Fuji, K.: The ‘2 + 1’construction of homooxacalix[3]arenes possessing different substituents on their upper rims. Chem. Pharm. Bull. 48, 882–884 (2000)Google Scholar
  71. 71.
    Shinkai, S., Ikeda, A.: Novel interactions of calixarene π-systems with metal ions and fullerenes. Pure Appl. Chem. 71, 275–280 (1999)Google Scholar
  72. 72.
    Balch, A.L., Olmstead, M.M.: Structural chemistry of supermolecular assemblies that place flat molecular surfaces around the curved exteriors of fullerenes. Coord. Chem. Rev. 185–186, 601–617 (1999)Google Scholar
  73. 73.
    Shinkai, S., Ikeda, A.: Calixarene-fullerene conjugates: marriage of the third generations of inclusion compounds and carbon clusters. Gazz. Chim. Ital. 127, 657–662 (1997)Google Scholar
  74. 74.
    Braun, T.: Water soluble fullerene-cyclodextrin supramolecular assemblies preparation, structure, properties. Fullerene Sci. Technol. 5, 615–626 (1997)Google Scholar
  75. 75.
    Ikeda, A., Shinkai, S.: Novel cavity design using calix[n]arene skeletons: toward molecular recognition and metal binding. Chem. Rev. 97, 1713–1734 (1997)Google Scholar
  76. 76.
    Raston, C.L.: Complexation of fullerenes. In: Atwood, J.L., Davies, J.E.D., MacNicol, D.D., Vogtle, F., Suslick, K.S. (eds.) Comprehensive Supramolecular Chemistry, pp. 777–787. Oxford (1996)Google Scholar
  77. 77.
    Lhotak, P., Shinkai, S.: Calix[n]arenes-powerful building blocks of supramolecular chemistry. J. Synth. Org. Chem., Jpn. 53, 963–974 (1995)Google Scholar
  78. 78.
    Constable, E.C.: Taking fullerenes from large molecules to supramolecules. Angew. Chem. Int. Ed. Engl. 33, 2269–2271 (1994)Google Scholar
  79. 79.
    Theobald, J.: Extraction and purification of fullerenes: a comprehensive review. Sep. Sci. Technol. 30, 2783–2819 (1995)Google Scholar
  80. 80.
    Diederich, F., G-Lopez, M.: Supramolecular fullerene chemistry. Chem. Soc. Rev. 28, 263–277 (1999)Google Scholar
  81. 81.
    Haino, T., Yamanaka, Y., Araki, H., Fukazawa, Y.: Metal-induced reguration of fullerene complexation with double-calix[5]arene. Chem. Commun. 402–403 (2002)Google Scholar
  82. 82.
    Makha, M., Hardie, M.J., Raston, C.L.: Inter-digitation approach to encapsulation of C60: [C60(p-phenylcalix[5]arene)2]. Chem. Commun. 1446 (2002)Google Scholar
  83. 83.
    Haino, T., Araki, H., Yamanaka, Y., Fukazawa, Y.: Fullerene receptor based on calix[5]arene through metal-assisted self-assembly. Tetrahedron Lett. 42, 3203–3206 (2001)Google Scholar
  84. 84.
    Mizyed, S., Ashram, M., Miller, D.O., Georghiou, P.E.: Supramoleculoar complexation of [60]fullerene with hexahomotrioxacalix[3]naphthalenes: a new class of naphthalene-based calixarenes. J. Chem. Soc., Perkin Trans. 2. 1916 (2001)Google Scholar
  85. 85.
    Wang, J., Bodige, S.G., Watson, W.H., Gutsche, C.D.: Complexation of fullerenes with 5,5’-biscalix[5]arene. J. Org. Chem. 65, 8260–8263 (2000)Google Scholar
  86. 86.
    Komatsu, K., Fujiwara, K., Murata, Y., Braun, T.: Aqueous solubilization of crystalline fullerenes by supramolecular complexation with γ-cyclodextrin and sulfocalix[8]arene under mechanochemical high-speed vibration milling. J. Chem. Soc., Perkin Trans. 1. 2963–2966 (1999)Google Scholar
  87. 87.
    Atwood, J.L., Barbour, L.J., Raston, C.L., Sudria, I.B.N.: C60 and C70 compounds in the pinkerlike jaws of calix[6]arene. Angew. Chem. Int. Ed. Engl. 37, 981–983 (1998)Google Scholar
  88. 88.
    Haino, T., Yanase, M., Fukazawa, Y.: Fullerenes enclosed in bridged calix[5]arenes. Angew. Chem. Int. Ed. Engl. 37, 997–998 (1998)Google Scholar
  89. 89.
    Suzuki, T., Nakashima, K., Shinkai, S.: Influence of para-substituents and solvents on selective precipitation of fullerenes by inclusion in calix[8]arenes. Tetrahedron Lett. 36, 249–252 (1995)Google Scholar
  90. 90.
    Suzuki, T., Nakashima, K., Shinkai, S.: Very convenient and efficient method for Fullerrene (C60) with calix[8]arene. Chem. Lett. 699–702 (1994)Google Scholar
  91. 91.
    Atwood, J.L., Koutsantonis, G.A., Raston, C.L.: Purification of C60 and C70 by selective complexation with calixarenes. Nature 368, 229–231 (1994)Google Scholar
  92. 92.
    Williams, R.M., Zwier, J.M., Verhoeven, J.W.: Interaction of fullerrenes and calixarenes in teh solid state studied with 13C-MAS NMR. J. Am. Chem. Soc. 116, 6965–6966 (1994)Google Scholar
  93. 93.
    Williams, R.M., Verhoeven, J.W.: Supramolecular encapsulation of C60 in a water soluble calixarene: a core-shell charge transfer complex. Recul. Trav. Chim. Pays-Bas 111, 531–532 (1992)Google Scholar
  94. 94.
    Andersson, T., Westman, G., Wennerstrom, O., Sundahl, M.: NMR and UV–VIS investigation of water-soluble fullerene-60-γ-cyclodextrin complex. J. Chem. Soc., Perkin Trans. 2. 1097–1101 (1994)Google Scholar
  95. 95.
    Priyadarsini, K.I., Mohan, H., Tyagi, A.K., Mittal, J.P.: Inclusion complex of γ-cyclogextrin-C60: formation, characterization, and photophysical properties in aqueous solutions. J. Phys. Chem. 98, 4756–4759 (1994)Google Scholar
  96. 96.
    Priyadarsini, K.I., Mohan, H., Mittal, J.P.: Characterization and properties of γ-cyclogextrin-C60 complex in aqueous solution. Fullerene Sci. Technol. 3, 479–493 (1995)Google Scholar
  97. 97.
    Sundahl, M., Andersson, T., Nilsson, K., Wennerstom, O., Westman, G.: Clusters of C60-fullerene in a water solution containing γ-cyclodextrin: a photophysical study. Synth. Met. 55–57, 3252–3257 (1993)Google Scholar
  98. 98.
    Masuhara, A., Fujitsuka, M., Ito, O.: Photoinduced electron-transfer of inclusion complexes of fullerenes (C60 and C70) in γ-dextrin. Bull. Chem. Soc. Jpn. 73, 2199–2206 (2000)Google Scholar
  99. 99.
    Boulas, P., Kutner, W., Jones, M.T., Kadish, K.M.: Bucky(basket)ball: stabilization of electrogenerated C60- radical monoanion in water by means of cyclodextrin inclusion chemistry. J. Phys. Chem. 98, 1282–1287 (1994)Google Scholar
  100. 100.
    Takekuma, S., Takekuma, H., Matsumoto, T., Yoshida, Z.: A highly efficient generation of γ-cyclodextrin-bicapped C60- in aqueous solution. Tetrahedron Lett. 41, 4909–4912 (2000)Google Scholar
  101. 101.
    Ikeda, A., Sato, T., Kitamura, K., Nishiguchi, K., Sasaki, Y., Kikuchi, J., Ogawa, T., Yogo, K., Takeya, T.: Efficient photocleavage of DNA utilizing water-soluble lipid membrane-incorporated [60]fullerenes prepared using a [60]fullerene exchange method. Org. Biomol. Chem. 3, 2907–2909 (2005)Google Scholar
  102. 102.
    Braun, T., B.-Barcza, A., Barcza, L., Thege, I.K., Fodor, M., Migali, B.: Mechanochemistry: a novel approach to the synthesis of fullerene compounds. Water soluble buckminsterfullerene-γ-cyclodextrin inclusion complexes via a solid-solid reaction. Solid State Ionics 74, 47–51 (1994)Google Scholar
  103. 103.
    Wang, G.-W., Komatsu, K., Murata, Y., Shiro, M.: Synthesis and X-ray structure of dumb-bell-shaped C120. Nature 387, 583–586 (1997)Google Scholar
  104. 104.
    Murthy, CN., Geckeler, K.E.: The water-soluble β-cyclodextrin-[60]fullerene complex. Chem. Commun. 1194–1195 (2001)Google Scholar
  105. 105.
    Yoshida, Z., Takekuma, H., Takekuma, S., Matsubara, Y.: Molecular recognition of C60 with γ-cyclodextrin. Angew. Chem. Int. Ed. 33, 1597–1599 (1994)Google Scholar
  106. 106.
    Andersson, T., Sundahl, M., Westman, G., Wennerstrom, O.: Host-guest chemistry of fullerenes: a water-soluble complex between C70 and γ-cyclodextrin. Tetrahedron Lett. 35, 7103–7106 (1994)Google Scholar
  107. 107.
    Andersson, T., Westman, G., Stenhagen, G., Sundahl, M., Sundahl, M.: A gas phase container for C60: a γ-cyclodextrin dimer. Tetrahedron Lett. 36, 597–600 (1995)Google Scholar
  108. 108.
    Andersson, T., Nilsson, K., Sundahl, M., Westman, G., Wennerstrom, O.: C60 embedded in γ-cyclodextrin: a water-soluble fullerene. J. Chem. Soc., Chem. Commun. 604–606 (1992)Google Scholar
  109. 109.
    Matsubara, H., Hasegawa, A., Shiwaku, K., Asano, K., Uno, M., Takahashi, S., Yamamoto, K.: Supramolecular inclusion complexes of fulerenes using cyclotriveratrylene derivatives with aromatic pendants. Chem. Lett. 923–924 (1998)Google Scholar
  110. 110.
    Matsubara, H., Oguri, S., Asano, K., Yamamoto, K.: Syntheses of novel cyclotriveratrylenophane capsules and their supramolecular complexes of fullerenes. Chem. Lett. 431–432 (1999)Google Scholar
  111. 111.
    Matsubara, H., Shimura, T., Hasegawa, A., Senba, M., Asano, K., Yamamoto, K.: Synthesis of novel fullerene tweezers and their supramolecular inclusion complex of C60. Chem. Lett. 1099–1100 (1998)Google Scholar
  112. 112.
    Steed, J.W., Junk, P.C., Atwood, J.L., Barnes, M.J., Raston, C.L., Burkhalter, R.S.: Ball and socket nanostructures: new supramolecular chemistry based on cycloveratrilene. J. Am. Chem. Soc. 116, 10346–10347 (1994)Google Scholar
  113. 113.
    Kawase, T., Fujiwara, N., Tsutumi, M., Oda, M., Maeda, Y., Wakahara, T., Akasaka, T.: Supramolecular dynamics of cyclic[6]paraphenyleneacetylene complexes with [60]- and [70]fullerene derivatives: electronic and structural effects on complexation. Angew. Chem. Int. Ed. Engl. 43, 5060–5062 (2004)Google Scholar
  114. 114.
    Kawase, T., Seirai, Y., Darabi, H.R., Oda, M., Sarakai, Y., Tashiro, K.: All-hyrocarbon inclusion complexes of carbon nanoring: cyclic [6]- and [8]paraphenyleneacetylenes. Angew. Chem. Int. Ed. Engl. 42, 1621–1624 (2003)Google Scholar
  115. 115.
    Kawase, T., Tanaka, K., Fujiwara, N., Darabi, H.R., Oda, M.: Complexation of a carbon nanoring with fullerenes. Angew. Chem. Int. Ed. Engl. 42, 1624–1628 (2003)Google Scholar
  116. 116.
    Kawase, T., Tanaka, K., Seirai, Y., Shiono, N., Oda, M.: Complexation of carbon nanorings with fullerenes: supramolecular dynamics and structural tuning for a fullerene sensor. Angew. Chem. Int. Ed. Engl. 42, 5597–5600 (2003)Google Scholar
  117. 117.
    Kawase, T., Tanaka, K., Shiono, N., Seirai, Y., Oda, M.: Onion-type complexation based on carbon nanoring and a buckminsterfullerene. Angew. Chem. Int. Ed. Engl. 43, 1722–1724 (2004)Google Scholar
  118. 118.
    Kawase, T.: Synthesis and supramolecular properties of carbon nanorings: exploration of the interaction between curved conjugated systems. J. Synth. Org. Chem., Jpn. 65, 888–896 (2007)Google Scholar
  119. 119.
    Boyd, P.D.W., Reed, C.A.: Fullerene-porphyrin constructs. Acc. Chem. Res. 38, 235–242 (2005)Google Scholar
  120. 120.
    Wu, Z.-Q., Shao, X.-B., Li, C., Hou, J.-L., Wang, K., Jiang, X.-K., Li, Z.-T.: Hydrogen-bonding-driven preorganized Zinc porphyrin receptors for efficient complexation of C60, C70, and C60 derivatives. J. Am. Chem. Soc. 127, 17460–17468 (2005)Google Scholar
  121. 121.
    Shoji, Y., Tashiro, K., Aida, T.: Selective extraction of higher fullerenes using cyclic dimers of zinc porphyrins. J. Am. Chem. Soc. 126, 6570–6571 (2004)Google Scholar
  122. 122.
    Ishii, T., Aizawa, N., Kanehama, R., Yamashita, M., Sugiura, K., Miyasaka, H.: Cocrystallites consisting of metal macrocycles with fullerenes. Coord. Chem. Rev. 226, 113–124 (2002)Google Scholar
  123. 123.
    Ayabe, M., Ikeda, A., Kubo, Y., Takeuchi, M., Shinkai, S.: A dendritic porphyrin receptor for C60 which features a profound positive allosteric effect. Angew. Chem. Int. Ed. Engl. 41, 2790–2792 (2002)Google Scholar
  124. 124.
    Kubo, Y., Sugasaki, A., Ikeda, M., Sugiyasu, K., Sonoda, K., Ikeda, A., Takeuchi, M., Shinkai, S.: Cooperative C60 binding to a porphyrin tetramer arranged around a p-terphenyl axis in 1:2 host-guest stoichiometry. Org. Lett. 4, 925–928 (2002)Google Scholar
  125. 125.
    Kimura, M., Saito, Y., Ohta, K., Hanabusa, K., Shirai, H., Kobayashi, N.: Self-organization of supramolecular complex composed of rigid dendritic porphyrin and fullerene. J. Am. Chem. Soc. 124, 5274–5275 (2002)Google Scholar
  126. 126.
    Zheng, J.-Y., Tashiro, K., Hirabayashi, Y., Kinbara, K., Saigo, K., Aida, T., Sakamoto, S., Yamaguchi, K.: Cyclic dimers of metalloporphirins as tunable hosts for fullerenes: a remarkable effect of rhodium(III). Angew. Chem. Int. Ed. Engl. 40, 1858–1861 (2001)Google Scholar
  127. 127.
    Tashiro, K., Aida, T., Zheng, J.-Y., Kinbara, K., Saigo, K., Sakamoto, S., Yamaguchi, K.: A cyclic dimer of metalloporphyrin forms a highly stable inclusion complex with C60. J. Am. Chem. Soc. 121, 9477–9478 (1999)Google Scholar
  128. 128.
    Zondervan, C., van den Beuken, E.K., Kooijman, H., Spek, A.L., Feringa, B.L.: Efficient synthesis and molecular structure of 2-hydroxyisophthalaldehyde. Tetrahedron Lett. 38, 3111–3114 (1997)Google Scholar
  129. 129.
    Krenke, B., Friedrichsen, W.: A convenient access to iodinated calix[4]arenes. J. Chem. Soc., Perkin Trans. 1. 3377–3379 (1998)Google Scholar
  130. 130.
    Kajigaeshi, S., Kakinami, T., Yamasaki, H., Fujisaki, S., Kondo, M., Okamoto, T.: Iodination of phenols by use of benzyltrimethylammonium dichloroiodate. Chem. Lett. 2109 (1987)Google Scholar
  131. 131.
    Lindoy, L.F., Meehan, G.V., Svenstrup, N.: Mono- and diformylation of 4-substituted phenols: a new application of the Duff reaction. Synthesis 1029–1032 (1998)Google Scholar
  132. 132.
    Ponomarev, A.N., Aksel’rod B.M., Barchenko, V.T., Belousov, V.P., Egorova, Z.S., Igonchenkov, I.V., Isakov, A.Y., Kut’eva O.Y., Nikitin, V.A., Nikitin, D.V., Ruzaev, S.V., Rumyantsev, A.V., Tulyakov, O.S., Charykov, N.A., Yudovich, M.E., Yurin, A.L.: Solution-solid phase equilibria in the fullerene C60-fullerene C70-C5H5CH3 and fullerene C60-fullerene C70-o-C6H4(CH3)2 systems at 25 and 80°C, respectively. Russ. J. Phys. Chem. 74, 1942–1945 (2000)Google Scholar
  133. 133.
    Howard, J.B., McKinnon J.T., Makarovsky, Y., Lafleur, A.L., Johnson, M.E.: Fullerenes C60 and C70 in flames. Nature 352, 139–141 (1991)Google Scholar
  134. 134.
    Howard, J.B., Lafleur, A.L., Makarovsky, Y., Mitra, S., Pope, C.J., Yadav, T.K.: Fullerenes synthesis in combustion. Carbon 30, 1183–1201 (1992)Google Scholar
  135. 135.
    Murayama, H., Tomonoh, S., Alford, J.M., Karpuk, M.E.: Fullerene production in tons and more: from science to industry. Fuller. Nanotub. Carbon Nanostruct.12, 1–9 (2004)Google Scholar
  136. 136.
    Fetzer, J.C.: The preparative separation of fullerenes. In: Jinno, K. (ed.) Separation of Fullerenes by Liquid Chromatography, pp. 25–48. The Royal Society of Chemistry, Cambridge (1999)Google Scholar
  137. 137.
    Scrivens, W.A., Cassell, A.M., North, B.L., Tour, J.M.: Single column purification of gram quantities of C70. J. Am. Chem. Soc. 116, 6939–6940 (1994)Google Scholar
  138. 138.
    Darwish, A.D., Kroto, H.W., Taylor, R., Walton, D.R.M.: Improved chromatographic separation of C60 and C70. J. Chem. Soc., Chem. Commun. 15–16 (1994)Google Scholar
  139. 139.
    Isaacs, L., Wehrsig, A., Diederich, F.: Improved purification of C60 and formation of σ- and π-homoaromatic methano-bridged fullerenes by reaction with alkyl diazoacetates. Helv. Chim. Acta 76, 1231 (1993)Google Scholar
  140. 140.
    Scrivens, W.A., Bedworth, P.V., Tour, J.M.: Purification of gram quantities of C60. A new inexpensive and facile method. J. Am. Chem. Soc. 114, 7917–7919 (1992)Google Scholar
  141. 141.
    Wilson, M.A., Pang, L.S.K., Vassallo, A.M.: C60 separation on coal. Nature 355, 117–118 (1992)Google Scholar
  142. 142.
    Taylor, R., Hare, J.P., Abdul-Sada, A.K., Kroto, H.W.: Isolation, separation and characterization of the fullerenes C60 and C70: the third form of carbon. J. Chem. Soc., Chem. Commun. 1423–1425 (1990)Google Scholar
  143. 143.
    Ajie, H., Alvarez, M.M., Anz, S.J., Beck, R.D., Diederich, F., Fostiropoulos, K., Huffman, D.R., Kratschmer, W., Rubin, Y., Schriver, K.E., Sensharma, D., Whetten, R.L.: Characterization of the soluble all-carbon malecules C60 and C70. J. Phys. Chem. 94, 8630–8633 (1990)Google Scholar
  144. 144.
    Bhyrappa, P., Penicaud, A., Kawamoto, M., Reed, C.A.: Improved chromatographic separation and purification of C60 and C70 fullerenes. J. Chem. Soc., Chem. Commun. 936–937 (1992)Google Scholar
  145. 145.
    Chatterjee, K., Parker, D.H., Wurz, P., Lykke, K.R., Gruen, D.M., Stock, L.M.: Fast one-step separation and purification of buckminsterfullerene, C60, from carbon soot. J. Org. Chem. 57, 3253–3254 (1992)Google Scholar
  146. 146.
    Vassallo, A.M., Palmisano, A.J., Pang, L.S.K., Wilson, M.A.: Improved separation of fullerene-60 and -70. J. Chem. Soc., Chem. Commun. 60–61 (1992)Google Scholar
  147. 147.
    Govindraj, A., Rao, C.N.R.: Convenient procedures for obtaining pure C60 and C70 in relatively larger quantities. Fullerene Sci. Technol. 1, 557–562 (1993)Google Scholar
  148. 148.
    Manolova, N., Rashkov, I., Legras, D., Delpeux, S., Beguin, F.: Separation of C60/C70 mixture on activated carbon and activated carbon fibres. Carbon 33, 209–213 (1995)Google Scholar
  149. 149.
    Bubnov, V.P., Spitsina, N.G., Yagubskii, E.B.: Synthesis and high-speed single-column separation of fullerenes C60, C70, and Cn (n>70). Mol. Mat. 7, 85–88 (1996)Google Scholar
  150. 150.
    Bucsi, I., Aniszfeld, R., Shamma, T., Prakash, G.K.S., Olah, G.A.: Convenient separation of high-purity C60 from crude fullerene extract by selective complexation with AlCl3. Proc. Natl. Acad. Sci. USA 91, 9019–9021 (1994)Google Scholar
  151. 151.
    Doome, R.J., Fonseca, A., Richter, H., Nagy, J.B., Thiry, P.A., Lucas, A.A.: Purification of C60 by fractional crystallization. J. Phys. Chem. Solids 58, 1839–1843 (1997)Google Scholar
  152. 152.
    Zhou, X., Gu, Z., Wu, Y., Sun, Y., Jin, Z., Xiong, Y., Sun, B., Wu, Y., Fu, H., Wang, J.: Separation of C60 and C70 fullerenes in gram quantities by fractional crystallization. Carbon 32, 935–937 (1994)Google Scholar
  153. 153.
    Wu, Y., Sun, Y., Gu, Z., Zhou, X., Xiong, Y., Sun, B., Jin, Z.: A combined recrystallization and preparative liquid chromatographic method for the isolation of pure C70 fullerenes. Carbon 32, 1180–1182 (1994)Google Scholar
  154. 154.
    Coustel, N., Bernier, P., Aznar, R., Zahab, A., Lambert, J.-M., Lyard, P.: Purification of C60 by a simple crystallization procedure. J. Chem. Soc., Chem. Commun. 1402–1403 (1992)Google Scholar
  155. 155.
    Nagata, K., Dejima, E., Kikuchi, Y., Hashiguchi, M.: Kilogram-scale [60]fullerene separation from a fullerene mixture: selective complexation of fullerenes with 1,8-diazabicyclo[5.4.0]undec−7-ene (DBU). Chem. Lett. 34, 178–179 (2005)Google Scholar
  156. 156.
    Kibbey, C.E., Savina, M.R., Parseghian, B.K., Francis, A.H., Meyerhoff, M.E.: Selective separation of C60 and C70 fullerenes on tetraphenylporphyrin-silica gel stationary phases. Anal. Chem. 65, 3717–3719 (1993)Google Scholar
  157. 157.
    Xiao, J., Savina, M.R., Martin, G.B., Francis, A.H., Meyerhoff, M.E.: Efficient HPLC purification of endohedral metallofullerenes on a porphyrin-silica stationary phase. J. Am. Chem. Soc. 116, 9341–9342 (1994)Google Scholar
  158. 158.
    Xiao, J., Meyerhoff, M.E.: High-performance liquid chromatography of C60, C70, and higher fullerenes on tetraphenylporphyrin-silica stationary phases using strong mobile phase solvents. J. Chromatogr. 715, 19–25 (1995)Google Scholar
  159. 159.
    Coutant, D.E., Clarke, S.A., Francis, A.H., Meyerhoff, M.E.: Highly selective separations of fullerenes on porphyrin-silica stationary phases. In: Jinno, K. (ed.) Separation of Fullerenes by Liquid Chromatography, pp. 129–145. The Royal Society of Chemistry, Cambridge (1999)Google Scholar
  160. 160.
    Eichhorn, D.M., Yang, S., Jarrell, W., Baumann, T.F., Beall, S., White, A.J.P., Williams, D.J., Barret, A.G.M., Hoffman, B.M.: [60]Fullerene and TCNQ donor-acceptor crystals of octakis(dimethylamino)porphyrazine. J. Chem. Soc., Chem. Commun. 1703–1704 (1995)Google Scholar
  161. 161.
    Sun, Y., Drovetskaya, T., Bolskar, R.D., Bau, R., Boyd, P.D.W., Reed, C.A.: Fullerides of pyrrolidine-functionalized C60. J. Org. Chem. 62, 3642–3649 (1997)Google Scholar
  162. 162.
    Maruyama, H., Fujiwara, M., Tanaka, K.: Synthesis of fullerene-porphyrin complex. Chem. Lett. 805–806 (1998)Google Scholar
  163. 163.
    Olmstead, M.M., Costa, D.A., Maitra, K., Noll, B.C., Phillips, S.L., Calcar, P.M.V., Balch, A.L.: Interaction of curved and flat molecular surfaces. The structures of crystalline compounds composed of fullerene (C60, C60O, C70, and C120O) and metal octaethylporphyrin units. J. Am. Chem. Soc. 121, 7090–7097 (1999)Google Scholar
  164. 164.
    Boyd, P.D.W., Hodgson, M.C., Richard, C.E.F., Oliver, A.G., Chaker, L., Brother, P.J., Bolskar, R.D., Tham, F.S., Reed, C.A.: Selective supramolecular porphyrin/fullerene interactions. J. Am. Chem. Soc. 121, 10487–10495 (1999)Google Scholar
  165. 165.
    Amaroli, N., Diederich, F., Echegoyen, L., Habicher, T., Flamigni, L., Marconi, G., Nierengarten, J.-F.: A new pyridyl-substituted metanofullerene derivative. Photophysics, electrochemistry and self-assembly with zinc(II) meso-tetraphenylporphyrin (ZnTPP). New. J. Chem. 77–83 (1999)Google Scholar
  166. 166.
    Konarev, D.V., Neretin, I.S., Slovokhotov, Y.L., Yudanova, E.I., Drichko, N.V., Shul’ga Y.M., Tarasov, B.P., Gumanov, L.L., Batsanov, A.S., Howard, J.A.K., Lyubovskaya, R.N.: New molecular complexes of fullerenes C60 and C70 with tetraphenylporphyrins [M(tpp)], in which M = H2, Mn, Co, Cu, Zn, and FeCl. Chem. Eur. J. 7, 2605–2616 (2001)Google Scholar
  167. 167.
    Wang, Y.-B., Zhenyang, L.: Supramolecular interactions between fullerenes and porphyrins. J. Am. Chem. Soc. 125, 6072–6073 (2003)Google Scholar
  168. 168.
    Guldi, D.M., Ros, T.D., Braiuca, P., Prato, M., Alessio, E.: C60 in the box. A supramolecular C60-porphyrin assembly. J. Mater. Chem. 12, 2001–2008 (2002)Google Scholar
  169. 169.
    Sun, D., Tham, F.S., Reed, C.A., Boyd, P.D.W.: Extending supramolecular fullerene-porphyrin chemistry to pillared metal-organic frameworks. Proc. Natl. Acad. Sci. USA 99, 5088–5092 (2002)Google Scholar
  170. 170.
    Kimura, M., Shiba, T., Yamazaki, M., Hanabusa, K., Shirai, H., Kobayashi, N.: Construction of regurated nanospace around a porphyrin core. J. Am. Chem. Soc. 123, 5636–5642 (2001)Google Scholar
  171. 171.
    Ouchi, A., Tashiro, K., Yamaguchi, K., Tsuchiya, T., Akasaka, T., Aida, T.: A self-regulatory host in an oscillatory guest motion: complexation of fullerenes with a short-spaced cyclic dimer of an organorhodium porphyrin. Angew. Chem. Int. Ed. Engl. 45, 3542–3546 (2006)Google Scholar
  172. 172.
    Shoji, Y., Tashiro, K., Aida, T.: Sensing of chiral fullerenes by a cyclic host with an asymmetrically distorted pai-electronic component. J. Am. Chem. Soc. 128, 10690–10691 (2006)Google Scholar
  173. 173.
    Tashiro, K., Hirabayashi, Y., Aida, T., Saigo, K., Fujiwara, K., Komatsu, K., Sakamoto, S., Yamaguchi, K.: A supramolecular oscillator composed of carbon nanocluster C120 and a rhodium(III) porphyrin cyclic dimer. J. Am. Chem. Soc. 124, 12086–12087 (2002)Google Scholar
  174. 174.
    Tashiro, K., Aida, T.: π-Electronic charge-transfer interactions in inclusion complexes of fullerenes with cyclic dimers of metalloporphyrins. J. Incl. Phenom. Macrocycl. Chem. 41, 215–217 (2001)Google Scholar
  175. 175.
    Nishioka, T., Tashiro, K., Aida, T., Zheng, J.-Y., Kinbara, K., Saigo, K., Sakamoto, S., Yamaguchi, K.: Molecular design of a novel dendrimaer porphyrin for supramolecular fullerene/dendrimer hybridization. Macromolecules 33, 9182–9184 (2000)Google Scholar
  176. 176.
    Yamaguchi, T., Ishii, N., Tashiro, K., Aida, T.: Supramolecular peapods composed of a metalloporphyrin nanotube and fullerenes. J. Am. Chem. Soc. 125, 13934–13935 (2003)Google Scholar
  177. 177.
    Ayabe, M., Ikeda, A., Shinkai, S., Sakamoto, S., Yamaguchi, K.: A novel [60]fullerene receptor with a Pd(II)-switched bisporphyrin cleft. Chem. Commun. 1032–1033 (2002)Google Scholar
  178. 178.
    Sun, D., Tham, F.S., Reed, C.A., Chaker, L., Burgess, M., Boyd, P.D.W.: Porphyrin-fullerene host-guest chemistry. J. Am. Chem. Soc. 122, 10704–10705 (2000)Google Scholar
  179. 179.
    Sun, D., Tham, F.S., Reed, C.A., Chaker, L., Boyd, P.D.W.: Supramolecular fullerene-porphyrin chemistry. Fullerene complexation by metalated “Jaws porphyrin” hosts. J. Am. Chem. Soc. 124, 6604–6612 (2002)Google Scholar
  180. 180.
    Dudic, M., Lhotak, P., Stibor, I., Petriclova, H., Lang, K.: (Thia)calix[4]arene-porphyrin conjugates: novel receptor for fullerene complexation with C70 over C60 selectivity. New. J. Chem. 28, 85–90 (2004)Google Scholar
  181. 181.
    Arimura, T., Nishioka, T., Suga, Y., Murata, S., Tachiya, M.: Inclusion properties of a new metallo-porphyrin dimer derived from a calix[4]arene: tweezers for C70. Mol. Cryst. Liq. Cryst. 379, 413–418 (2002)Google Scholar
  182. 182.
    Crossley, M.J., Thordarson, P., Bannerman, J.P., Maynard, P.J.: A convenient procedure for moderate-scale Rothemund synthesis of lipophilic porphyrins: an alternative to the Adler-Longo and Lindsey methodologies. J. Porphyrins Phthalocyanines 2, 511–516 (1998)Google Scholar
  183. 183.
    Uno, H., Matsumoto, A., Ono, N.: Hexagonal columnar porphyrin assembly by unique trimeric complexation of a porphyrin dimer with π–π stacking: remarkable thermal behavior in a solid. J. Am. Chem. Soc. 125, 12082–12083 (2003)Google Scholar
  184. 184.
    Wang, M.-X., Zhang, X.-H., Zheng, Q.-Y.: Synthesis, structure, and [60]fullerene complexation properties of azacalix[m]arene[n]pyridines. Angew. Chem. Int. Ed. Engl. 43, 838–842 (2004)Google Scholar
  185. 185.
    Rahman, A.F.M.M., Bhattacharya, S., Peng, X., Kimura, T., Komatsu, N.: Unexpectedly large binding constants of azulenes with fullerenes. Chem. Commun. doi: 10.1039/b718392e
  186. 186.
    Bhattacharya, S., Nayak, S.K., Chattopadhyay, S., Banerjee, M., Mukherjee, A.K.: Study of groud state EDA complex formation between [70]fullerene and a series of polynuclear aromatic hydrocarbons. Spectrochim. Acta A 58, 289–296 (2002)Google Scholar
  187. 187.
    Datta, K., Banerjee, M., Seal, B.K., Mukherjee, A.K.: Ground state EDA complex formation between [60]fullerene and a series of polynuclear aromatic hydrocarbons. J. Chem. Soc., Perkin Trans. 2. 531–534 (2000)Google Scholar
  188. 188.
    Andrews, R., Jaques, D., Qian, D., Rantell, T.: Multiwall carbon nanotubes: synthesis and application. Acc. Chem. Res. 35, 1008–1017 (2002)Google Scholar
  189. 189.
    Rao, C.N.R., Govindaraj, A.: Carbon nanotubes from organometallic precursors. Acc. Chem. Res. 35, 998–1007 (2002)Google Scholar
  190. 190.
    Endo, M., Muramatsu, H., Hayashi, T., Kim, Y.A., Terrones, M., Dresselhaus, M.S.: ‘Buckypaper’ from coaxial nanotubes. Nature 433, 476 (2005)Google Scholar
  191. 191.
    Sugai, T., Yoshida, H., Shimada, T., Okazaki, T., Shinohara, H.: New synthesis of high-quality double-walled carbon nanotubes by high-temperature pulsed arc discharge. Nano Lett. 3, 769–773 (2003)Google Scholar
  192. 192.
    Flahaut, E., Bacsa, R., Peigney, A., Laurent, C.: Gram-scale CCVD synthesis of double-walled carbon nanotubes. Chem. Commun. 1442–1443 (2003)Google Scholar
  193. 193.
    Bachilo, S.M., Balzano, L., Herrera, J.E., Pompeo, F., Resasco, D.E., Weisman, R.B.: Narrow (n, m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J. Am. Chem. Soc. 125, 11186–11187 (2003)Google Scholar
  194. 194.
    Wang, B., Poa, C.H.P., Wei, L., Li, L.-J., Yang, Y., Chen, Y.: (n, m) Selectivity of single-walled carbon nanotubes by different carbon precursors on Co-Mo catalysts. J. Am. Chem. Soc. 129, 9014–9019 (2007)Google Scholar
  195. 195.
    Ouyang, M., Huang, J.-L., Lieber, C.M.: Fundamental electronic properties and applications of single-walled carbon nanotubes. Acc. Chem. Res. 35, 1018–1025 (2002)Google Scholar
  196. 196.
    Charlier, J.-C.: Defects in carbon nanotubes. Acc. Chem. Res. 35, 1063–1069 (2002)Google Scholar
  197. 197.
    Samsonidze, G.G., Grüneis, A., Saito, R., Jorio, A., Souza Filho, A.G., Dresselhause, G., Dresselhause, M.S.: Interband optical transitions in left- and right-handed single-walled carbon nanotubes. Phys. Rev. B 69, 205402 (2004)Google Scholar
  198. 198.
    S.-Castillo, A., R.-Velázquez, C.E., Noguez, C.: Optical circular dichroism of single-wall carbon nanotubes. Phys. Rev. B 73, 045401 (2006)Google Scholar
  199. 199.
    Moss, G.P.: Basic terminology of stereochemistry. Pure Appl. Chem. 68, 2193–2222 (1996)Google Scholar
  200. 200.
    Strano, M.S.: Sorting out left from right. Nat. Nanotechnol. 2, 340–341 (2007)Google Scholar
  201. 201.
    Szabados, Á., Biró, L.P., Surján, P.R.: Intertube interactions in carbon nanotube bundles. Phys.Rev. B 73, 195404 (2006)Google Scholar
  202. 202.
    Liu, Z., Suenaga, K., Yoshida, H., Sugai, T., Shinohara, H., Iijima, S.: Determination of optical isomers for left-handed or right-handed chiral double-wall carbon nanotubes. Phys. Rev. Lett. 95, 187406 (2005)Google Scholar
  203. 203.
    Damnjanovic, M., Milosevic, I., Vukovic, T., Sredanovic, R.: Full symmetery, optical activity, and potentials of single-wall and multiwall nanotubes. Phys. Rev. B 60, 2728–2739 (1999)Google Scholar
  204. 204.
    Ciuparu, D., Chen, Y., Lim, S., Haller, G.L., Pfefferle, L.: Uniform-diameter single-walled carbon nanotubes catalytically grown in cobalt-incorporated MCM-41. J. Phys. Chem. B 108, 503–507 (2004)Google Scholar
  205. 205.
    Luo, Z.T., Pfefferle, L.D., Haller, G.L., Papadimitrakopoulos, F.: (n, m) Abundance evaluation of single-walled carbon nanotubes by fluorescence and absorption spectroscopy. J. Am. Chem. Soc. 128, 15511–15516 (2006)Google Scholar
  206. 206.
    Collins, P.G., Arnold, M.S., Avouris, P.: Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292, 706–709 (2001)Google Scholar
  207. 207.
    Krupke, R., Hennrich, F., Löhneysen, H.v., Kappes, M.M.: Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301, 344–347 (2003)Google Scholar
  208. 208.
    Strano, M.S., Dyke, C.A., Usrey, M.L., Barone, P.W., Allen, M.J., Shan, H., Kittrell, C., Hauge, R.H., Tour, J.M., Smalley, R.E.: Electronic structure control of single-walled carbon nanotube functionalization. Science 301, 1519–1522 (2003)Google Scholar
  209. 209.
    Zheng, M., Jogota, A., Semke, E.D., Diner, B.A., Mclean, R.S., Lustig, S.R., Richardson, R.E., Tassi, N.G.: DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2, 338–342 (2003)Google Scholar
  210. 210.
    Li, H., Zhou, B., Lin, Y., Gu, L., Wang, W., Fernando, K.A.S., Kumar, S., Allard, L.F., Sun, Y.-P.: Selective interactions of porphyrins with semiconducting single-walled carbon nanotubes. J. Am. Chem. Soc. 126, 1014–1015 (2004)Google Scholar
  211. 211.
    Arnold, M.S., Green, A.A., Hulvat, J.F., Stupp, S.I., Hersam, M.C.: Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 1, 60–65 (2006)Google Scholar
  212. 212.
    Maeda, Y., Kanda, M., Hirashima, Y., Hasegawa, T., Kimura, S., Lian, Y., Wakahara, T., Akasaka, T., Kazaoui, S., Minami, N., Okazaki, T., Hayamizu, Y., Hata, K., Lu, J., Nagase, S.: Dispersion and separation of small-diameter single-walled carbon nanotubes. J. Am. Chem. Soc. 128, 12239–12242 (2006)Google Scholar
  213. 213.
    Chattopadhyay, D., Galeska, I., Papadimitrakopoulos, F.: A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes. J. Am. Chem. Soc. 125, 3370–3375 (2003)Google Scholar
  214. 214.
    Maeda, Y., Kimura, S., Kanda, M., Hirashima, Y., Hasegawa, T., Wakahara, T., Lian, Y., Nakahodo, T., Tsuchiya, T., Akasaka, T., Lu, J., Zhang, X., Gao, Z., Yu, Y., Nagase, S., Kazaoui, S., Minami, N., Shimizu, T., Tokumoto, H., Saito, R.: Large-scale separation of metallic and semiconducting single-walled carbon nanotubes. J. Am. Chem. Soc. 127, 10287–10290 (2005)Google Scholar
  215. 215.
    Zheng, M., Jogota, A., Strano, M.S., Santos, A.P., Barone, P., Chou, S.G., Diner, B.A., Dresselhause, M.S., Mclean, R.S., Onoa, G.B., Samsonidze, G.G., Semke, E.D., Usrey, M., Walls, D.J.: Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302, 1545–1548 (2003)Google Scholar
  216. 216.
    Duesberg, G.S., Muster, J., Krstic, V., Burghard, M., Roth, S.: Chromatographic size separation of single-walled carbon nanotubes. Appl. Phys. A 67, 117–119 (1998)Google Scholar
  217. 217.
    Chattopadhyay, D., Lastella, S., Kim, S., Papadimitrakopoulos, F.: Length separation of zwitterion-functionalized single wall carbon nanotubes by GPC. J. Am. Chem. Soc. 124, 728–729 (2002)Google Scholar
  218. 218.
    Duesberg, G.S., Blau, W., Byrne, H.J., Muster, J., Burghard, M., Roth, S.: Chromatography of carbon nanotubes. Synth. Metals 103, 2484–2485 (1999)Google Scholar
  219. 219.
    Farkas, E., Anderson, M.E., Chen, Z., Rinzler, A.G.: Length sorting cut single wall carbon nanotubes by high performance liquid chromatography. Chem. Phys. Lett. 363, 111–116 (2002)Google Scholar
  220. 220.
    Heller, D.A., Mayrhofer, R.M., Baik, S., Grinkova, Y.V., Usrey, M.L., Strano, M.S.: Concomitant length and diameter separation of single-walled carbon nanotubes. J. Am. Chem. Soc. 126, 14567–14573 (2004)Google Scholar
  221. 221.
    Nish, A., Hwang, J.-Y., Doig, J., Nicholas, R.J.: Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat. Nanotechnol. 2, 640–646 (2007)Google Scholar
  222. 222.
    Chen, F., Wang, B., Chen, Y., Li, L.-J.: Toward the extraction of single species of single-walled carbon nanotubes using fluorene-based polymers. Nano Lett. 7, 3013–3017 (2007)Google Scholar
  223. 223.
    Wildöer, J.W.G., Venema, L.C., Rinzler, A.G., Smalley, R.E., Dekker, C.: Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59–62 (1998)Google Scholar
  224. 224.
    Odom, T.W., Huang, J.-L., Kim, P., Lieber, C.M.: Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391, 62–64 (1998)Google Scholar
  225. 225.
    Hashimoto, A., Suenaga, K., Urita, K., Shimada, T., Sugai, T., Bandow, S., Shinohara, H., Iijima, S.: Atomic correlation between adjacent graphene layers in double-wall carbon nanotubes. Phys. Rev. Lett. 94, 045504 (2005)Google Scholar
  226. 226.
    Meyer, R.R., Friedrichs, S., Kirkland, A.I., Sloan, J., Hutchinson, J.L., Green, M.L.H.: A composite method for the determination of the chirality of single walled carbon nanotubes. J. Microsc. 212, 152–157 (2003)Google Scholar
  227. 227.
    Tasaki, S., Maekawa, K., Yamabe, T.: π-Band contribution to the optical properties of carbon nanotubes: effects of chirality. Phys. Rev. B 57, 9301–9318 (1998)Google Scholar
  228. 228.
    Ivchenko, E.L., Spivak, B.: Chirality effects in carbon nanotubes. Phys. Rev. B 66, 155404 (2002)Google Scholar
  229. 229.
    Dukovic, G., Balaz, M., Doak, P., Berova, N.D., Zheng, M., Mclean, R.S., Brus, L.E.: Racemic single-walled carbon nanotubes exhibit circular dichroism when wrapped with DNA. J. Am. Chem. Soc. 128, 9004–9005 (2006)Google Scholar
  230. 230.
    Bachilo, S.M., Strano, M.S., Kittrell, C., Hauge, R.H., Smalley, R.E., Weisman, R.B.: Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002)Google Scholar
  231. 231.
    Weisman, R.B., Bachilo, S.M.: Dependence of optical transition energies on structure for single-walled carbon-nanotubes in aqueous suspension: an empirical Kataura plot. Nano Lett. 3, 1235–1238 (2003)Google Scholar
  232. 232.
    Komatsu, N., Kadota, N., Kimura, T., Osawa, E.: Solution-phase 13C-NMR spectroscopy of detonation nanodiamond. Chem. Lett. 36, 398–399 (2007)Google Scholar
  233. 233.
    Komatsu, N.: Medicinal application of diamonds. In: Yoshikawa, M. (ed.) Diamond Technology, pp. 683–687. NTG, Tokyo (2007)Google Scholar
  234. 234.
    Komatsu, N., Kadota, N., Kimura, T.: Surface functionalization of nanodiamonds. New Diamond 83, 24–25 (2006)Google Scholar
  235. 235.
    Komatsu, N.: Materials science of nanocarbons aiming at nanomedicine. Chem. Eng. 51, 941–944 (2006)Google Scholar
  236. 236.
    Zheng, M., Semke, E.D.: Enrichment of single chirality carbon nanotubes. J. Am. Chem. Soc. 19, 6084–6085 (2007)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of ChemistryShiga University of Medical ScienceSeta, OtsuJapan

Personalised recommendations