Improved thermal stability of an organic zeolite by fluorination

  • Katharina Reichenbächer
  • Gaëtan Couderc
  • Antonia Neels
  • Karl Krämer
  • Edwin Weber
  • Jürg Hulliger
Original Article


The thermal stability of an organic zeolite material, namely 2,4,6-tris(4-bromo-3,5-difluorphenoxy)-1,3,5-triazin (Br-3,5-DFPOT), was improved by fluorination of 2,4,6-tris(4-bromophenoxy)-1,3,5-triazin (BrPOT). The open pore structure (van der Waals diameter of 10.5 Å) of the modified zeolite was observed up to 110 °C in comparison to 70 °C for BrPOT. Nitrogen sorption at low temperature showed a type I isotherm and derived pore volumes thereof are in agreement with structural data. It was observed here that Br-3,5-DFPOT crystals preserving the open pore structure could only be obtained below a typical size of about 50 μm. The improved thermal stability of the fluorinated system is attributed to an enhancement of the strength of the Br3-synthon.


Fluorine bonds Host–guest system Organic zeolites Sorption isotherm 


  1. 1.
    Organic Zeolite: Sozzani, P., Comotti, A., Simonutti, R., Meersmann, T., Logan, J.W., Pines, A.: A porous crystalline molecular solid explored by hyperpolarized Xenon. Angew. Chem. Int. Ed. 39, 2695–2699 (2000); Hertzsch, T., Hulliger, J., Weber, E., Sozzani, P.: In: Atwood, J.L., Steed, J.W. (eds.) Encyclopedia of Supramolecular Chemistry. Marcel Dekker, New York (2004); Soldatov, D.V., Ripmeester, J.A.: Organic zeolites. Stud. Surf. Sci. Catal. 156, 37–54 (2005); Lee, S., Venkataraman, D.: Organic zeolites? Stud. Surf. Sci. Catal. 102, 75–95 (1996); Görbitz, C.H.: An exceptionally stable peptide nanotube system with flexible pores. Acta Cryst. B58, 849–854 (2002); Soldatov, D.V., Moudrakovski, I.L., Ripmeester, J.A.: Organic zeolites: dipeptides as microporous materials. Angew. Chem. Int. Ed. 43, 6308–6311 (2004); Yang, J., Dewal, M.B., Shimizu, L.S.: Self-assembling bisurea macrocycles used as an organic zeolite for a highly stereoselective photodimerization of 2-cyclohexenone. J. Am. Chem. Soc. 128, 8122–8123 (2006)Google Scholar
  2. 2.
    Smith, J.V.: Origin and structure of zeolites, ACS Monograph 171 (Zeolite Chem. Catal.), 3 (1976); Yamamoto, K., Nohara, Y., Domon, Y., Takahashi, Y., Sakata, Y., Plévert, J., Tatsumi, T.: Organic-inorganic hybrid zeolites with framework organic groups. Chem. Mater. 17, 3913–3920 (2005)Google Scholar
  3. 3.
    MOF: Kitagawa, S., Kitaura, R., Noro, S.-I.: Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004); Rosseinsky, M.J.: Recent developments in metal-organic framework chemistry: design, discovery, permanent porosity and flexibility. Micropor Mesopor Mater. 73, 15–30 (2004); Rowsell, J.L.C., Yaghi, O.M.: Metal-organic frameworks: a new class of porous materials. Micropor Mesopor Mater. 73, 3–14 (2004); Mueller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K., Pastré, J.: Metal-organic frameworks-prospective industrial applications. J. Mater. Chem. 16, 626–636 (2006)Google Scholar
  4. 4.
    Suess, H.I., Hulliger, J.: Organic channel inclusion compound featuring an open pore size of 12 Å. Micropor Mesopor Mater. 78, 23–27 (2005)CrossRefGoogle Scholar
  5. 5.
    Sozzani, P., Bracco, S., Comotti, A., Feretti, L., Simonutti, R.: Methane and carbon dioxide storage in a porous van der Waals crystal. Angew. Chem. Int. Ed. 44, 1816–1820 (2005)CrossRefGoogle Scholar
  6. 6.
    Couderc, G., Hertzsch, T., Behrnd, N.-R., Krämer, K., Hulliger, J.: Reversible sorption of nitrogen and xenon gas by the guest-free zeolite tris(o-phenylenedioxy)cyclotriphosphazene (TPP). Micropor Mesopor Mater. 88, 170–175 (2006)CrossRefGoogle Scholar
  7. 7.
    Stoe & Cie. IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany (2005)Google Scholar
  8. 8.
    Sheldrick, G.: Phase annealing in SHELX-90: direct methods for larger structures. Acta Cryst. A46, 467–473 (1990)Google Scholar
  9. 9.
    Sheldrick, G.: SHELXL-97, program for crystal structure refinement. University of Göttingen, Germany (1997)Google Scholar
  10. 10.
    Spek, A.: Single-crystal structure validation with the program PLATON. J. Appl. Cryst. 36, 7–13 (2003)CrossRefGoogle Scholar
  11. 11.
    Reichenbächer, K., Neels, A., Stoeckli-Evans, H., Balasubramaniyan, P., Müller, K., Weber, E., Hulliger, J.: New fluorinated channel-type Host-guest compounds. Cryst. Growth Des. 7, 1399–1405 (2007)CrossRefGoogle Scholar
  12. 12.
    Brunaeur, S.: The adsorption of gases and vapors, vol. 1. Princeton Uni Press, Princeton (1943)Google Scholar
  13. 13.
    Dubinin, M.M., Astakhov, V.A.: Description of adsorption equilibriums of vapors on zeolites over wide ranges of temperature and pressure. Adv. Chem. 102, 69–85 (1971)CrossRefGoogle Scholar
  14. 14.
    Metrangolo, P., Resnati, G.: Halogen bonding: a paradigm in supramolecular chemistry. Chem. Eur. J. 7, 2511–2519 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Katharina Reichenbächer
    • 1
  • Gaëtan Couderc
    • 1
  • Antonia Neels
    • 2
  • Karl Krämer
    • 1
  • Edwin Weber
    • 3
  • Jürg Hulliger
    • 1
  1. 1.Departement of Chemistry and BiochemistryUniversity of BerneBerneSwitzerland
  2. 2.Institute of MicrotechnologyUniversity of NeuchâtelNeuchatelSwitzerland
  3. 3.Institute of Organic ChemistryTU Bergakademie FreibergFreiberg/SachsenGermany

Personalised recommendations