Advertisement

Host–guest complexes of mixed glycol-phenanthroline cryptands: prediction of ion selectivity by quantum chemical calculations IV

  • Ralph PuchtaEmail author
  • Rudi van Eldik
Original Article

Abstract

Structures and complex-formation energies, calculated with DFT (B3LYP/LANL2DZp) for the cryptands [2.2.phen] and [2.phen.phen] with endohedrally complexed alkali and alkaline earth metal ions, were utilized to predict their ion selectivity. Both cryptands [2.2.phen] and [2.phen.phen] have a cavity size smaller than [2.2.2], [phen.phen.phen] and [bpy.bpy.bpy], and prefer to bind K+ and Sr2+, whereas [2.2.phen] that is larger than [2.phen.phen], has a preference for Ba2+, and [2.phen.phen] favours Na+ and Ca2+. The cryptand flexibility is mainly attributed to the presence of CH2–NSP3···NSP3–CH2 groups.

Graphical abstract

Host–Guest Complexes of mixed Glycol-Phenanthroline Cryptands—Prediction of Ion Selectivity by Quantum Chemical Calculations III

Ralph Puchta* and Rudi van Eldik

Keywords

Cation selectivity

Host–guest

DFT

DFT-studies allow a sensitive analysis of selectivity and cage size. Calculations predict a favourable binding of K+, Sr2+ and Ba2+ by [2.2.phen], and binding of K+, Na+, Ca2+ and Sr2+ by [2.phen.phen]. The cryptands fold around the ions by twisting their torsion angles in order to reach the best coordination mode for each cation.

Keywords

Cation selectivity Host–guest DFT 

Notes

Acknowledgements

The authors gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft. We thank Prof. Tim Clark for hosting this work at the Computer Chemistry Center, Nico van Eikema Hommes for helpful discussions and the Regionales Rechenzentrum Erlangen (RRZE) for a generous allotment of computer time.

References

  1. 1.
    Haber, F.: Das Gold im Meerwasser. Angew. Chem. 40, 303–314 (1927)CrossRefGoogle Scholar
  2. 2.
    Bayer, E., Fiedler, H., Hock, K.-L., Otterbach, D., Schenk, G., Voelter, W.: Struktur und Spezifität organischer Komplexbildner. Angew. Chem. 76, 76–83 (1964). Angew. Chem. Int. Ed. Engl. 3, 325–332 (1964) and literature cited thereGoogle Scholar
  3. 3.
    (a) Lehn, J.-M.: Supramolecular Chemistry. VCH, Weinheim (1995). (b) Vögtle, F.: Supramolekulare Chemie. Teubner, Stuttgart (1992)Google Scholar
  4. 4.
    Jaouen, G.: Bioorganometallics. Wiley-VCH, Weinheim (2005)Google Scholar
  5. 5.
    Schalley , Ch.A.: Analytical Methods in Supramolecular Chemistry. Wiley-VCH, Weinheim (2007)Google Scholar
  6. 6.
    see, e.g., (a) Schatz, J.: Recent application of ab initio calculations on calixarenes and calixarene complexes. A review. Collect. Czech. Chem. Commun. 69, 1169–1194 (2004). (b) Puchta, R., Clark, T., Bauer, W.: The formation of endo-complexes between calixarenes and amines - a reinvestigation. J. Mol. Model. 12, 739–747 (2006)Google Scholar
  7. 7.
    Śliwa, W.: Calixarene assemblies. Pol. J. Chem. 75, 921–940 (2001)Google Scholar
  8. 8.
    see, e.g., (a) Pedersen, C.J.: Die Entdeckung der Kronenether (Nobel-Vortrag). Angew. Chem. 100, 1053–1059 (1988). (b) Pedersen, C.J.: The discovery of crown ethers (Noble lecture). Angew. Chem. Int. Ed. Engl. 27, 1021–1027 (1988). (c) Cram, D.J.: Von molekularen Wirten und Gästen sowie ihren Komplexen (Nobel-Vortrag). Angew. Chem. 100, 1041–1052 (1988). (d) Cram, D.J.: The design of molecular hosts, guests, and their complexes (Nobel lecture). Angew. Chem. Int. Ed. Engl. 27, 1009–1020 (1988). (e) Lehn, J.-M.: Supramolekulare Chemie - Moleküle, Übermoleküle und molekulare Funktionseinheiten (Nobel-Vortrag). Angew. Chem. 100, 91–116 (1988). (f) Lehn, J.-M.: Supramolecular chemistry - scope and perspectives molecules, supermolecules, and molecular devices (Nobel lecture). Angew. Chem. Int. Ed. Engl. 27, 89–112 (1988) and literature cited there. (g) Ellermann, J., Bauer, W., Schütz, M., Heinemann, F.W., Moll, M.: Chemie polyfunktioneller Moleküle, 130. Mitt. Rubidium- und Cäsium-bis(diphenylphosphanyl)amid. - Synthesen, (18-Krone-6)-Komplexe, Spaltprodukte, Kristallstrukturen und Festkörper-NMR-Spektren. Monatshefte für Chemie - Chemical Monthly 129, 547–566 (1998). (h) Hausner, S.H., Striley, C.A.F., Krause-Bauer, J.A., Zimmer, H.: Dibenzotetraaza crown ethers: a new family of crown ethers based on o-phenylenediamine. J. Org. Chem. 70, 5804–5817 (2005.) (i) Power, N.P., Dalgarno, S.J., Atwood, J.L.: Robust and stable pyrogallol[4]arene molecular capsules facilitated via an octanuclear zinc coordination belt. New J. Chem. 31, 17–20 (2007)Google Scholar
  9. 9.
    see, e.g., Lehn, J.-M.: Cryptates: the chemistry of macropolycyclic inclusion complexes. Acc. Chem. Res. 11, 49–57 (1978)Google Scholar
  10. 10.
    Dietrich, B., Viout, P., Lehn, J.-M.: Macrocyclic Chemistry. VCH, Weinheim (1993)Google Scholar
  11. 11.
    see, e.g., (a) Saalfrank, R.W., Dresel, A., Seitz, V., Trummer, S., Hampel, F., Teichert, M., Stalke, D., Stadler, C., Daub, J., Schünemann, V., Trautwein, A.X.: Topologic equivalents of coronands, cryptands and their inclusion complexes: synthesis, structure and properties of {2}-metallacryptands and {2}-metallacryptates. Chem. Eur. J. 3, 2058–2062 (1997). (b) Saalfrank, R.W., Löw, N., Kareth, S., Seitz, V., Hampel, F., Stalke D., Teichert, M.: Kronenether, Doppeldecker- und Sandwichkomplexe: kationengesteuerter Aufbau von metallatopomeren Coronaten. Angew. Chem. 110, 182–184 (1998). (c) Saalfrank, R.W., Löw, N., Kareth, S., Seitz, V., Hampel, F., Stalke, D., Teichert, M.: Crown ethers, double-decker, and sandwich complexes: cation-mediated formation of metallatopomer coronates. Angew. Chem. Int. Ed. Engl. 37, 172–174 (1998). (d) Saalfrank, R.W., Seitz, V., Caulder, D.L., Raymond, K.N., Teichert, M., Stalke, D.: Self-assembly of {2}-metallacryptands and {2}-metallacryptates. Eur. J. Inorg. Chem. 1313–1317 (1998) (e) Puchta, R., Seitz, V., van Eikema Hommes, N.J.R., Saalfrank, R.W.: Exploring {2}-metallacryptands and {2}-metallacryptates with quantum chemical methods - when (not only) computer chemists’ dreams come true. J. Mol. Model. 6, 126–132 (2000). (f) Saalfrank, R.W., Seitz, V., Heinemann F., Göbel, C. Herbst-Irmer, R.: Metal and ligand control in di- and octa-nuclear cluster formation. J. Chem. Soc. Dalton Trans. 599 (2001). (g) Saalfrank, R.W., Bernt, I., Uller, E., Hampel, F.: Templatgesteuerter Selbstaufbau sechs- und achtgliedriger Eisencoronate. Angew. Chem. 109, 2596–2599 (1997). (h) Saalfrank, R.W., Bernt, I., Uller, E., Hampel, F.: Template-mediated self assembly of six- and eight-membered iron coronates. Angew. Chem. Int. Ed. Engl. 36, 2482–2485 (1997). (i) Waldmann, O., Schülein, J., Koch, R., Müller, P., Bernt, I., Saalfrank, R.W., Andres, H.-P., Güdel, H.U.: Magnetic anisotropy of two cyclic hexanuclear Fe(III) clusters entrapping alkaline ions. Inorg. Chem. 38, 5879–5886 (1999). (j) Saalfrank, R.W., Deutscher, Ch., Maid, H., Ako, A.M., Sperner, S., Nakajima, T., Bauer, W., Hampel, F., Heß, B.A., van Eikema Hommes, N.J.R., Puchta, R., Heinemann, F.W.: Synthesis, structure, and dynamics of six-membered metallacoronands and metallodendrimers of Iron and Indium. Chem. Eur. J. 10, 1899–1905 (2004). (k) Saalfrank, R.W., Nakajima, T., Mooren, N., Scheurer, A., Maid, H., Hampel, F., Trieflinger, Ch., Daub, J.: Syntheses and properties of metal-centered mixed-valent [NEt4]{MnII[MnII 3MnIII 3Cl6(L)6]} Manganese wheels. Eur. J. Inorg. Chem. 8, 1149–1153 (2005). (l) Saalfrank, R.W., Scheurer, A., Puchta, R., Hampel, F., Maid, H., Heinemann, F.W.: Threading Cesium ions: metal, host, and ligand control in supramolecular coordination chemistry. Angew. Chem. Int. Ed. Engl. 46, 265–272 (2007) (m) Saalfrank, R.W., Scheurer, A., Puchta, R., Hampel, F., Maid, H., Heinemann, F.W.: Auffädelung von Caesiumionen: Metall-, Gast- und Ligandenkontrolle in der supramolekularen Koordinationschemie. Angew. Chem. 119, 265–269 (2007). (n) Saalfrank, R.W., Mooren, N., Scheurer, A., Maid, H., Heinemann, F.W., Hampel, F., Bauer, W.: Synthesis and structure of self-complementary {2}-metallacryptates and their linear or meandering infinite arrangements in the solid state. Eur. J. Inorg. Chem., 4815–4822 (2007). (o) Woisetschläger, O.E., Scheurer, A., Saalfrank, R.W., Beck, W.: Kohlenwasserstoffverbrückte Metallkomplexe. LI. Ein Bis(ferrocenyl-1,3-diketonat)-Kupfer(II)-Chelatkomplex als Wirt für Calcium- und Alkalimetallionen. Z. Anorg. Allg. Chem. 633, 2141–2143 (2007) and literature cited thereGoogle Scholar
  12. 12.
    see, e.g., Demlov, E.V.: Phasen Transfer Catalysts. MERCK-Schuchardt, DarmstadtGoogle Scholar
  13. 13.
    see, e.g., Li, J.-H., Shih, J.S.: Application of cryptand/polystyrene drift-type phase transfer catalysts for reduction of ketones. J. Chin. Chem. Soc. 46, 885–893 (1999)Google Scholar
  14. 14.
    see, e.g., Housecroft, C.E.: Clusterverbindungen von Hauptgruppenelementen. VCH, Weinheim (1994)Google Scholar
  15. 15.
    see, e.g., (a) Müller, W.H.: Sr-85 decorporation with a cryptating agent. Naturwissenschaften 57, p. 248 (1970). (b) Lehn, J.-M., Montavon, F.: Cryptates. XXV. Stability and selectivity of cation inclusion complexes of polyaza-macrobicyclic ligands. Selective complexation of toxic heavy metal cations. Helv. Chim. Acta. 61, 67–76 (1978). (c) Lehn, J.-M., Kirch, M.: Selektiver Transport von Alkalimetall-Kationen mit makrobicyclischen Carriern durch flüssige Membranen. Angew. Chem. 87, 542–543 (1975). (d) Lehn, J.-M., Kirch, M.: Selective transport of alkali metal cations through a liquid membrane by macrobicyclic carriers. Angew. Chem. Int. Ed. Engl. 14, 555–556 (1975)Google Scholar
  16. 16.
    see, e.g., Ajgaonkar, H.S., Khopkar, S.M.: Solvent extraction separation of calcium (ii) with cryptand 222 using erythrosine as the counter anion. Chem. Analityczna. (Chem. Anal.) 44, 61–66 (1999)Google Scholar
  17. 17.
    Tait, D., Haase, G., Wiechen, A.: Die Festphasenextraktion des Strontiums mittels des an Dowex 50 W x 8 gebundenen Kryptanden 222 bei der Bestimmung von Sr-90 in flüssiger Milch. Kieler Milchw Forsch 50, 211–223 (1998)Google Scholar
  18. 18.
    Burai, L., Scopelliti, R., Tóth, E.: EuII-cryptate with optimal water exchange and electronic relaxation: a synthon for potential pO2 responsive macromolecular MRI contrast agents. Chem. Commun. 43, 2366–2367 (2002)CrossRefGoogle Scholar
  19. 19.
    Rodriguez-Urbi, J.-C., Alpha, B., Plancherel, D., Lehn, J.-M.: Photoactive cryptands. Synthesis of the sodium cryptates of macrobicyclic ligands containing bipyridine and phenoanthroline groups. Helv. Chim. Acta 67, 2264–2269 (1984)CrossRefGoogle Scholar
  20. 20.
    Dürr, H., Zengerle, K., Trierweiler, H.P.: Podands, coronands and cryptands as new complex ligands in photoelectron transfer reactions. Synthesis and first photophysical studies. Z. Naturforsch. B 43, 361–367 (1988)Google Scholar
  21. 21.
    Alpha, B., Lehn, J.-M., Mathis, G.: Energietransfer-Luminiszenz von Europium(III)- und Terbium-Cryptanden mit makrobicyclischen Polypyridinliganden. Angew. Chem. 99, 259–261 (1987). Alpha, B., Lehn, J.-M., Mathis, G.: Energy transfer luminescence of Europium(III) and Terbium(III) cryptates of macrobicyclic polypyridine ligands. Angew. Chem. Int. Ed. Engl. 26, 266–267 (1987)Google Scholar
  22. 22.
    Mathis, G., Lehn, J.-M.: FR 2570703 (1986)Google Scholar
  23. 23.
    Charbonnière, L.J., Hildebrandt, N., Ziessel, R.F., Löhmannsröben, H.-G.: Lanthanides to quantum dots resonance energy transfer in time-resolved fluoroimmunoassays and luminescence microscopy. J. Am. Chem. Soc. 128, 12800–12809 (2006)CrossRefGoogle Scholar
  24. 24.
    Bazin, H., Mathis, G.: WO 9918114 (1999)Google Scholar
  25. 25.
    Billadeau, M.A., Leland, J.K., Shen, L.: WO 9641177 (1996)Google Scholar
  26. 26.
    (a) Puchta, R., van Eldik, R.: Host–guest complexes of oligopyridine cryptands: prediction of ion selectivity by quantum chemical calculations. Eur. J. Inorg. Chem. 10, 1120–1127 (2007). (b) Puchta, R., van Eldik, R.: Host–guest complexes of bicyclic hexaamine cryptands - prediction of ion selectivity by quantum chemical calculations. II. Aust. J. Chem. 60, 889–897 (2007)Google Scholar
  27. 27.
    Karkhaneei, E., Zebarjadian, M.H., Shamsipur, M.: Complexation of Ba2+, Pb2+, Cd2+, and UO22+ ions with 18-crown-6 and dicyclohexyl-18-crown-6 in nitromethane and acetonitrile solutions by a competitive NMR technique using the Li-7 nucleus as a probe. J. Solution Chem. 30, 323–333 (2001)CrossRefGoogle Scholar
  28. 28.
    Madrakian, T., Shamsipur, M.: Competitive NMR study of the complexation of some alkaline earth and transition metal ions with 12-crown-4, 15-crown-5 and benzo-15-crown-5 in acetonitrile solution using the lithium-7 nucleus as a probe. J. Coord. Chem. 52, 139–149 (2000)CrossRefGoogle Scholar
  29. 29.
    Hojo, M., Hisatsune, I., Tsurui, H., Minami, S.: Interaction between monoaza-, diaza-, or polyazacrown ethers and alkali metal ions in acetonitrile by polarography. Anal. Sci. 16, 1277–1284 (2000)CrossRefGoogle Scholar
  30. 30.
    Madrakian, T., Shamsipur, M.: Competitive lithium-7 NMR study of the complexation of some alkaline earthand transition metal ions with 18-crown-6 in acetonitrile and its 50:50 mixtures with nitrobenzene and nitroethane. Polyhedron 15, 1681–1685 (1996)CrossRefGoogle Scholar
  31. 31.
    Shamsipur, M., Karkhaneei, E., Afkhami, A.: NMR study of exchange kinetics of the lithium ion with cryptand C222 in binary acetonitrile-nitromethane mixtures. J. Coord. Chem. 44, 23–32 (1998)CrossRefGoogle Scholar
  32. 32.
    D’Aprano, A., Sesta, B., Capalbi, A., Immarino, M., Mauro, V.: Transport properties and ion pair formation of lithium, sodium and potassium ions cryptated by [222] in methanol and acetonitrile. J. Electroanal. Chem. 403, 257–260 (1996)CrossRefGoogle Scholar
  33. 33.
    Pasgreta, E., Puchta, R., Galle, M., van Eikema Hommes N.J.R., Zahl, A., van Eldik R.: Ligand exchange processes on solvated lithium cations II. Complexation by cryptands in gamma-butyrolactone as solvent. J. Encl. Phenom. Macro. 58, 81–88 (2007)CrossRefGoogle Scholar
  34. 34.
    Madrakian, T., Afkhami, A., Ghasemi, J., Shamsipur, M.: Lithium-7 and sodium-23 nmr studies of complexation of Li+ and Na+ ions with 1, 10-phenanthroline, 2, 2′-bipyridine and 8-hydroxyquinoline in some non-aqueous solutions. Polyhedron 15, 3647–3652 (1996)CrossRefGoogle Scholar
  35. 35.
    Galle, M., Puchta, R., van Eikema Hommes, N.J.R., van Eldik, R.: Rational design of cation hosts - prediction of cation selectivity by quantum chemical calculations. Z. Phys. Chem. 220, 511–523 (2006)Google Scholar
  36. 36.
    Auffinger, P., Wipff, G.: Quantitative studies on moecluar recognition: free energy perturbation studies on M+/222 cryptates in water and in methanol. J. Chim Phys. Phys.-Chim. Biol. 88, 2525–2534 (1991)Google Scholar
  37. 37.
    Auffinger, P., Wipff, G.: Molecular Dynamics simulations on the protonated 222,H+ and 222,2H+ cryptands in water. Endo versus exo conformations. J. Encl. Phenom. Macro. 11, 71 (1991)CrossRefGoogle Scholar
  38. 38.
    Auffinger, P., Wipff, G.: Hydration of the 222 cryptand and cryptates studied by molecular dynamics simulations. J. Am. Chem. Soc. 113, 5976–5988 (1991)CrossRefGoogle Scholar
  39. 39.
    Auffinger, P., Wipff, G.: High temperature annealed molecular dynamics simulations as a tool for conformational sampling. Application to the bicyclic “222” cryptand. J. Comput. Chem. 11, 19 (1990)CrossRefGoogle Scholar
  40. 40.
    Bayly, C.I., Kollmann, P.A.: Molecular dynamics and free energy calculations on the peculiar bimodal alkali ion selectivity of an 8-subunit cavitand. J. Am. Chem. Soc. 116, 697–703 (1994)CrossRefGoogle Scholar
  41. 41.
    Comba, P., Hambley, T.W.: Molecular Modeling of Inorganic Compounds. VCH, Weinheim (2001)Google Scholar
  42. 42.
    Leite, E.S., Santana, S.R., Hünenberger, P.H., Freitas, L.C.G., Longo, R.L.: On the relative stabilities of the alkali cations 222 cryptates in the gas phase and in water-methanol solution. J. Mol. Model. 13, 1017 (2007)CrossRefGoogle Scholar
  43. 43.
    Lehn, J.-M., Sauvage, J.P.: Cryptates. XVI. [2]-Cryptates. Stability and selectivity of alkali and alkaline-earth macrobicyclic complexes. J. Am. Chem. Soc. 97, 6700–6707 (1975)CrossRefGoogle Scholar
  44. 44.
    Cox, B.G., Garcias-Rosas, J., Schneider, H.: Solvent dependence of the stability of cryptate complexes. J. Am. Chem. Soc. 103, 1384–1398 (1981).CrossRefGoogle Scholar
  45. 45.
    (a) von Ragué Schleyer, P., Maerker, C., Dransfeld, A., Jiao, H., van Eikema Hommes, N.J.R.: Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J. Am. Chem. Soc. 118, 6317–6318 (1996). (b) von Ragué Schleyer, P., Jiao, H., van Eikema Hommes, N.J.R., Malkin, V.G., Malkina, O.L.: An evaluation of the aromaticity of inorganic rings: refined evidence from magnetic properties J. Am. Chem. Soc. 119, 12669–12670 (1997). (c) von Ragué Schleyer, P., Manoharan, M., Wang, Z.-X., Kiran, B., Jiao H., Puchta, R., van Eikema Hommes, N.J.R.: Dissected nucleus-independent chemical shift analysis of pi-aromaticity and antiaromaticity. Org. Lett. 3, 2465–2468 (2001). (d) Chen, Z., Wannere, Ch.S., Corminboeuf, C., Puchta, R., von Ragué Schleyer, P.: Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev. 105, 3842–3888 (2005). (e) Fallah-Bagher-Shaidaei, H., Wannere, Ch.S., Corminboeuf, C., Puchta, R., von Ragué Schleyer, P.: Which NICS aromaticity index for planar pi rings is best? Org. Lett. 8, 863–866 (2006)Google Scholar
  46. 46.
    (a) Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Phys. Chem. 97, 5648–5652 (1993). (b) Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988). (c) Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J.: Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1964). (d) Dunning, T.H. Jr., Hay, P.J.: In: Schaefer III, H.F. (ed.) Modern theoretical chemistry: methods of electronic structure theory, vol. 3, chap. 1. Plenum, New York (1977). (e) Hay, P.J., Wadt, W.R.: Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82, 270 (1985). (f) Hay, P.J., Wadt, W.R.: Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 82, 284 (1985). (g) Hay, P.J., Wadt, W.R.: Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82, 299 (1985). (h) Huzinaga S. (ed.): Gaussian Basis Sets for Molecular Calculations. Elsevier, Amsterdam (1984)Google Scholar
  47. 47.
    The performance of the computational level employed in this study is well documented, see for example: (a) Puchta, R., Meier, R., van Eikema Hommes, N.J.R., van Eldik, R.: Quantum chemical analysis of the enantiomerisation mechanism of complexes of the type [MII(XU)4]F+ (M = Pt, Pd, Ni; X = S, Se, Te; U = urea). Eur. J. Inorg. Chem., 4063–4067 (2006). (b) Scheurer, A., Maid, H., Hampel, F., Saalfrank, R.W., Toupet, L., Mosset, P., Puchta, R., van Eikema Hommes, N.J.R.: Influence of the conformation of salen complexes on the stereochemistry of the asymmetric epoxidation of olefins. Eur. J. Org. Chem. 2566–2574 (2005). (c) Illner, P., Zahl, A., Puchta, R., van Eikema Hommes, N.J.R., Wasserscheid, P., van Eldik, R.: Mechanistic studies on the formation of Pt(II) hydroformylation catalysts in imidazolium-based ionic liquids. J. Organomet. Chem. 690, 3567–3576 (2005). (d) Weber, Ch.F., Puchta, R., van Eikema Hommes, N.J.R., Wasserscheid, P., van Eldik, R.: Transition-state effects of ionic liquids in substitution reactions of PtII complexes. Angew. Chem. 117, 6187–6192 (2005). (e) Weber, Ch. F., Puchta, R., van Eikema Hommes, N.J.R., Wasserscheid, P., van Eldik, R.: Transition-state effects of ionic liquids in substitution reactions of PtII complexes. Angew. Chem Int. Ed. Engl. 44, 6033–6038 (2005)Google Scholar
  48. 48.
    van Eikema Hommes, N.J.R., Clark, T.: Regression formulae for ab initio and density functional calculated chemical shifts. J. Mol. Model. 11, 175–185 (2005)CrossRefGoogle Scholar
  49. 49.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S.D., Daniels, M.C., Strain, O., Farkas, D.K., Malick, A.D., Rabuck, K., Raghavachari, J.B., Foresman, A., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford CT (2004)Google Scholar
  50. 50.
    Geometrical determination of the cavity size is not valid since the cryptand flexibility would be ignored. See e.g. Comba, P., Hambley, T.W.: Molecular Modeling of Inorganic Compounds. VCH, Weinheim (1995)Google Scholar
  51. 51.
    Puchta, R., Galle, M., van Eikema Hommes, N., Pasgreta, E., van Eldik, R.: Evidence for associative ligand exchange processes on solvated Lithium cations. Inorg. Chem. 43, 8227–8229 (2004) and literature cited thereCrossRefGoogle Scholar
  52. 52.
    Puchta, R., van Eikema Hommes, N.J.R., van Eldik, R.: Evidence for interchange ligand-exchange processes on solvated Beryllium cations Helv. Chim. Acta., 88, 911–922 (2005)CrossRefGoogle Scholar
  53. 53.
    (a) Clar, E.: The Aromatic Sextet. Wiley, London (1972). (b) Cremer, D., Günther, H.: Protonenresonanz-Spektroskopie ungesättigter Ringsysteme, XVII Der Benzolkern als Sonde für die π-Elektronen-Struktur von Annulenen. Liebigs Ann. Chem. 763, 87–108 (1972). (c) Mitchell, R.H.: Measuring aromaticity by NMR. Chem. Rev. 101, 1301–1316 (2001). (d) Meissner, U.E., Gensler, A., Staab, H.A.: Benzo[18]annulen. Tetrahedron Lett. 18, 3–6 (1977). (e) Staab, H.A., Meissner, U. E, Gensler, A.: Konjugation in makrocyclischen Bindungssystemen, XXIX. Synthese und Eigenschaften von Benzo[18]annulen. Chem. Ber. 112, 3907–3913 (1979). (f) Meissner, U.E., Gensler, A., Staab, H.A.: Benzo[14]annulen. Angew. Chem. 88, 374–375 (1976). (g) Meissner, U.E., Gensler, A., Staab, H.A.: Benzo[14]annulene. Angew. Chem. Int. Ed. Engl. 15, 365–366 (1976). (h) Staab, H.A., Meissner, U. E, Weinacht, W., Gensler, A.: Konjugation in makrocyclischen Bindungssystemen, XXVIII. Benzo-anellierte [14]Annulene. Chem. Ber. 112, 3895–3906 (1979). (i) Mitchell, R.H., Ward, T.R., Chen, Y., Wang, Y., Weerawarna, S.A., Dibble, P.W., Marsella, M.J., Almutairi A., Wang, Z.-Q.: Synthesis and photochromic properties of molecules containing [e]-annelated dihydropyrenes. Two and three way π-switches based on the dimethyldihydropyrene-metacyclophanediene valence isomerization. J. Am. Chem. Soc. 125, 2974–2988 (2003). (j) Ruiz-Morales, Y.: The agreement between Clar structures and nucleus-independent chemical shift values in pericondensed benzenoid polycyclic aromatic hydrocarbons: an application of the Y-rule. J. Phys. Chem. A 108, 10873–10896 (2004). (k) Boydston, A.J., Haley, M.M.: Diatropicity of dehydrobenzo[14]annulenes: comparative analysis of the bond-fixing ability of benzene on the parent 3,4,7,8,9,10,13,14-octadehydro[14]annulene. Org. Lett. 3, 3599–3601 (2001). (l) Boydston, A.J., Haley, M.M., Williams, R.V., Armantrout, J.R.: Diatropicity of 3,4,7,8,9,10,13,14-octadehydro[14]annulenes: a combined experimental and theoretical investigation. J. Org. Chem. 67, 8812–8819 (2002). (m) Moran, D., Stahl, F., Bettinger, H.F., Schaefer, H.F., von Ragué Schleyer, R.: Towards graphite: magnetic properties of large polybenzenoid hydrocarbons. J. Am. Chem. Soc. 125, 6746–6752 (2003). (n) Castro, C., Chen, Z., Wannere, C.S., Jiao, H., Karney, W.L., Mauksch, M., Puchta, R., van Eikema Hommes, N.J.R., von Ragué Schleyer, P.: Investigation of a putative Möbius aromatic hydrocarbon. The effect of benzannelation on Möbius [4 n]annulene aromaticity. J. Am. Chem. Soc., 127, 2425–2432 (2005)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Institute for Inorganic ChemistryUniversity of Erlangen-NürnbergErlangenGermany
  2. 2.Computer Chemistry CenterUniversity of Erlangen-NürnbergErlangenGermany

Personalised recommendations