Spectrofluorometric, thermal, and molecular mechanics studies of the inclusion complexation of selected imidazoline-derived drugs with β-cyclodextrin in aqueous media

Original Article


The inclusion complexes of selected imidazoline-derived drugs, namely Antazoline (AN), Naphazoline (NP) and Xylometazoline (XM) with β-cyclodextrin (β-CD) were investigated using steady-state fluorescence spectroscopy, differential scanning calorimetry (DSC), and molecular mechanics (MM) calculations and modeling. The modified form of the Benesi-Hildebrand relation was employed for estimating the formation constant (Kf) of the 1:1 inclusion complexes, which was applied based on measuring the variation in the fluorescence intensity of the guest molecule as a function of growing β-CD concentration. On the other hand, the formation of the inclusion complexes was verified by analyzing solid samples of the complexes using DSC. The thermodynamics of the inclusion complexation, standard enthalpy (ΔH°) and entropy changes −(ΔS°) were obtained from the temperature-dependence of Kf. Obtained values of ΔH° and ΔS° indicated that the inclusion process favorably proceeds through enthalpy changes that was sufficiently predominant to compensate for the unfavorable entropy changes. MM calculations revealed that the proposed drugs molecules can form 1:1 inclusion complexes with β-CD that are stabilized predominantly through van der Waals forces. In addition, MM calculation provided the energetically favored configuration of the inclusion complexes, where NP and XM can be included inside the β-CD cavity through its wide rim, whereas AN can penetrate through the narrow rim of the β-CD cavity.


Fluorescence Inclusion complex β-cyclodextrin Imidazoline-derived drugs Differential scanning calorimetry Molecular mechanics 



The financial support from the Graduate College of Scientific Research/Jordan University of Science and Technology is appreciatively acknowledged. Also, we would like to thank Al-Hekma Pharmaceuticals Co. and Amman Pharmaceutical Industries Co. for generously providing the drugs molecules used in this study.


  1. 1.
    Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743 (1998)CrossRefGoogle Scholar
  2. 2.
    Dodziuk, H. (ed.): Cyclodextrins, their complexes: chemistry, analytical methods, applications. Wiley-VCH, Weinheim (2006)Google Scholar
  3. 3.
    Kuwabara, T., Shiba, K., Nakajima, H., Ozawa, M., Miyajima, N., Hosoda, M., Kuramoto, N., Suzuki, Y.: Host-guest complexation affected by pH and length of spacer for hydroxyazobenzene-modified cyclodextrins. J. Phys. Chem. A 110, 13521 (2006)CrossRefGoogle Scholar
  4. 4.
    Liu, Y., Han, B., Zhang, H.: Spectroscopic studies on molecular recognition of modified cyclodextrins. Curr. Org. Chem. 81, 35 (2004)CrossRefGoogle Scholar
  5. 5.
    Galia, A., Navarre, E.C., Scialdone, O., Ferreira, M., Filardo, G., Tilloy, S., Monflier, E.: Complexation of phosphine ligands with peracetylated β-cyclodextrin in supercritical carbon dioxide: spectroscopic determination of equilibrium constants. J. Phys. Chem. B 111, 2573 (2007)CrossRefGoogle Scholar
  6. 6.
    Cravotto, G., Binello, A., Baranelli, E., Carraro, P., Trotta, F.: Cyclodextrins as food additives and in food processing. Curr. Nutr. Food Sci. 2, 343 (2006)CrossRefGoogle Scholar
  7. 7.
    Loftsson, T., Brewster, M.E., Masson, M.: Role of cyclodextrins in improving oral drug delivery. Am. J. Drug Deliv. 2, 261 (2004)CrossRefGoogle Scholar
  8. 8.
    Loftsson, T., Duchêne, D.: Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 329, 1 (2007)CrossRefGoogle Scholar
  9. 9.
    Kirschner, D.L., Jaramillo, M., Green, T.K.: Enantio separation and stacking of cyanobenz[f]isoindole-amino acids by reverse polarity capillary electrophoresis and sulfated β-cyclodextrin. Anal. Chem. 79, 736 (2007)CrossRefGoogle Scholar
  10. 10.
    Yang, G.S., Chen, D.M., Yang, Y., Tang, B., Gao, J.J., Aboul-Enein, H.Y., Koppenhoefer, B.: Enantioseparation of some clinically used drugs by capillary electrophoresis using sulfated β-cyclodextrin as a chiral selector. Chromatographia 62, 441 (2005)CrossRefGoogle Scholar
  11. 11.
    Henley, W.H., Wilburn, R.T., Crouch, A.M., Jorgenson, J.W.: Flow counterbalanced capillary electrophoresis using packed capillary columns: Resolution of enantiomers and isotopomers. Anal. Chem. 77, 7024 (2005)CrossRefGoogle Scholar
  12. 12.
    Wistuba, D., Kang, J., Schurig, V.: Chiral separation by capillary electrochromatography using cyclodextrin phases. Meth. Mol. Biol. 243, 401 (2004)Google Scholar
  13. 13.
    Pino, V., Lantz, A.W., Anderson, J.L., Berthod, A., Armstrong, D.W.: Theory and use of the pseudophase model in gas-liquid chromatographic enantiomeric separations. Anal. Chem. 78, 113 (2006)CrossRefGoogle Scholar
  14. 14.
    Zhong, Q., He, L., Beesley, T.E., Trahanovsky, W.S., Sun, P., Wang, C., Armstrong, D.W.: Development of dinitrophenylated cyclodextrin derivatives for enhanced enantiomeric separations by high-performance liquid chromatography. J. Chromatogr. A 1115, 19 (2006)CrossRefGoogle Scholar
  15. 15.
    Singh, M., Sharma, R., Banerjee, U.C.: Biotechnological applications of cyclodextrins. Biotech. Adv. 20, 341 (2002)CrossRefGoogle Scholar
  16. 16.
    Qi, Q., Zimmermann, W.: Cyclodextrin glucanotransferase: from gene to applications. Appl. Microbiol. Biotechnol. 66, 475 (2005)CrossRefGoogle Scholar
  17. 17.
    Kim, C.K., Park, J.S.: Solubility enhancers for oral drug delivery: can chemical structure manipulation be avoided? Am. J. Drug Deliv. 2, 113 (2004)CrossRefGoogle Scholar
  18. 18.
    Figueiras, A., Sarraguca, J.M.G., Carvalho, R.A., Pais, A.A.C.C., Veiga, F.J.B.: Interaction of omeprazole with a methylated derivative of β-cyclodextrin: phase solubility, NMR spectroscopy and molecular simulation. Pharmaceut. Res. 24, 377 (2007)CrossRefGoogle Scholar
  19. 19.
    Cirri, M., Maestrelli, F., Corti, G., Furlanetto, S., Mura, P.: Simultaneous effect of cyclodextrin complexation, pH, and hydrophilic polymers on naproxen solubilization. J. Pharm. Biomed. Anal. 42, 126 (2006)CrossRefGoogle Scholar
  20. 20.
    Bortolus, P., Marconi, G., Monti, S., Mayer, B.: Chiral discrimination of camphorquinone enantiomers by cyclodextrins: a spectroscopic and Photophysical Study. J. Phys. Chem. A 106, 1686 (2002)CrossRefGoogle Scholar
  21. 21.
    Krois, D., Brinker, U.H.: Induced circular dichroism and UV-Vis absorption spectroscopy of cyclodextrin inclusion complexes: structural elucidation of supramolecular Azi-adamantane (Spiro[adamantane-2,3'-diazirine]). J. Am. Chem. Soc. 120, 11627 (1998)CrossRefGoogle Scholar
  22. 22.
    de Marino, A., Rubio, L., Mendicuti, F.: Fluorescence and molecular mechanics of 1-methyl naphthalenecarboxylate/cyclodextrin complexes in aqueous medium. J. Incl. Phenom. Macrocyclic Chem. 58, 103 (2007)CrossRefGoogle Scholar
  23. 23.
    Pastor, I., Di Marino, A., Mendicuti, F.: Thermodynamics and molecular mechanics studies on a- and b-cyclodextrins complexation and diethyl 2,6-naphthalenedicarboxylate guest in aqueous medium. J. Phys. Chem. B 106, 1995 (2002)CrossRefGoogle Scholar
  24. 24.
    Tommasini, S., Calabrò, M.L., Stancanelli, R., Donato, P., Costa, C., Catania, S., Villari, V., Ficarra, P., Ficarra, R.: The inclusion complexes of hesperetin and its 7-rhamnoglucoside with (2-hydroxypropyl)-β-cyclodextrin. J. Pharm. Biomed. Anal. 39, 572 (2005)CrossRefGoogle Scholar
  25. 25.
    Guzzo, M.R., Uemi, M., Donate, P.M., Nikolaou, S., Machado, A.E.H., Okano, L.T.: Study of the complexation of fisetin with cyclodextrins. J. Phys. Chem. A 110, 10545 (2006)CrossRefGoogle Scholar
  26. 26.
    Zhang, H., Chen, G., Wang, L., Ding, L., Tian, Y., Jin, W., Zhang, H.: Study on the inclusion complexes of cyclodextrin and sulphonated azo dyes by electrospray ionization mass spectrometry. Int. J. Mass Spectrom. 252, 1 (2006)CrossRefGoogle Scholar
  27. 27.
    Bollo, S., Yáñez, C., Sturm, N., Squella, J.A.: Cyclic Voltammetric and Scanning Electrochemical Microscopic Study of thiolated β-cyclodextrin adsorbed on a gold electrode. Langmuir 19, 3365 (2003)CrossRefGoogle Scholar
  28. 28.
    Choi, S., Choi, B., Park, S.: Electrochemical sensor for electrochemically inactive β-D(+)-Glucose Using α-cyclodextrin template molecules. Anal. Chem. 74, 1998 (2002)CrossRefGoogle Scholar
  29. 29.
    Jullian, C., Miranda, S., Zapata-Torres, G., Mendizabal, F., Olea-Azar, C.: Studies of inclusion complexes of natural and modified cyclodextrin with (+)catechin by NMR and molecular modeling. Bioorg. Med. Chem. 15, 3217 (2007)CrossRefGoogle Scholar
  30. 30.
    Jiang, H., Sun, H., Zhang, S., Hua, R., Xu, Y., Jin, S., Gong, H., Li, L.: NMR investigations of inclusion complexes between β-cyclodextrin and naphthalene/anthraquinone derivatives. J. Incl. Phenom. Macrocyclic Chem. 58, 133 (2007)CrossRefGoogle Scholar
  31. 31.
    Xu, J., Tan, T., Janson, J.C., Kenne, L., Sandstroem, C.: NMR Studies on the interaction between (−)-epigallocatechin gallate and cyclodextrins, free and bonded to silica gels. Carbohydr. Res. 342, 843 (2007)CrossRefGoogle Scholar
  32. 32.
    Marques, H.M.C., Hadgraft, J., Kellaway, I.W.: Studies of cyclodextrin inclusion complexes. I. The salbutamol-cyclodextrin complex as studied by phase solubility and DSC. Int. J. Pharm. 63, 259 (1990)CrossRefGoogle Scholar
  33. 33.
    Yang, G.-F., Wang, H.-B., Yang, W.-C., Gao, D., Zhan, C.-G.: Bioactive permethrin/β-cyclodextrin inclusion complex. J. Phys. Chem. B 110, 7044 (2006)CrossRefGoogle Scholar
  34. 34.
    Giordano, F., Novak, C., Moyano, J.R.: Thermal analysis of cyclodextrins and their inclusion compounds. Thermochim. Acta 380, 123 (2001)CrossRefGoogle Scholar
  35. 35.
    Crupi, V., Ficarra, R., Guardo, M., Majolino, D., Stancanelli, R., Venuti, V.: UV–vis and FTIR–ATR spectroscopic techniques to study the inclusion complexes of genistein with β-cyclodextrins. J. Pharm. Biomed. Anal. 44, 110 (2007)CrossRefGoogle Scholar
  36. 36.
    Vandelli, M.A., Ruozi, B., Forni, F., Mucci, A., Salvioli, G., Galli, E.: A solution and solid state study on 2-hydroxypropyl-β-cyclodextrin complexation with hyodeoxycholic acid. J. Incl. Phenom. Macrocyclic Chem. 37, 237 (2000)CrossRefGoogle Scholar
  37. 37.
    Lipkowit, K.B.: Applications of computational chemistry to the Study of Cyclodextrins. Chem. Rev. 98, 1829 (1998)CrossRefGoogle Scholar
  38. 38.
    Castro, E.A., Barbiric, D.A.: Molecular modeling and cyclodextrins: a relationship strengthened by complexes. J. Curr. Org. Chem. 10, 715 (2006)CrossRefGoogle Scholar
  39. 39.
    Thompson, D., Larsson, J.A.: Modeling competitive guest binding to β-cyclodextrin molecular print-boards. J. Phys. Chem. B 110, 16640 (2006)CrossRefGoogle Scholar
  40. 40.
    Petrusewicz, J., Kaliszan, R.: Human blood platelet alpha adrenoceptor in view of the effects of various imidazol(in)e drugs on aggregation. Gen. Pharm. 22, 819 (1991)Google Scholar
  41. 41.
    Kaliszan, W., Petrusewicz, J., Kaliszan, R.: Imidazoline receptors in relaxation of acetylcholine-constricted isolated rat jejunum. Pharm. Rep. 58, 700 (2006)Google Scholar
  42. 42.
    Parini, A., Moudanos, C.G., Pizzinat, N., Lanier, S.M.: The elusive family of imidazoline binding sites. Trends Pharmacol. Sci. 17, 13 (1996)CrossRefGoogle Scholar
  43. 43.
    Souri, E., Amanlou, M., Farsam, H., Afshari, A.: A rapid derivative spectrophotometric method for simultaneous determination of naphazoline and antazoline in eye drops. Chem. Pharm. Bull. 54, 119 (2006)CrossRefGoogle Scholar
  44. 44.
    Ghoreishi, S.M., Behpour, M., Nabi, M.: A novel naphazoline -selective membrane sensor and its pharmaceutical applications. Sens. Actuators B 113, 963 (2006)CrossRefGoogle Scholar
  45. 45.
    Casado-Terrones, S., Fernandez-Sanchez, J.F., Diaz, B., Carretero, A.C., Fernandez-Gutierrez, A.: A fluorescence optosensor for analyzing naphazoline in pharmaceutical preparations. J. Pharm. Biomed. Anal. 38, 785 (2005)CrossRefGoogle Scholar
  46. 46.
    Milojevic, Z., Agbaba, D., Eric, S., Boberic-Borojevic, D., Ristic, P., Solujic, M.: High-performance liquid chromatographic method for the assay of dexamethasone and xylometazoline in nasal drops containing methyl p-hydroxybenzoate. J. Chromatogr. A 949, 79 (2002)CrossRefGoogle Scholar
  47. 47.
    Marchesini, A.F., Williner, M.R., Mantovani, V.E., Robles, J.C., Goicoechea, H.C.: Simultaneous determination of naphazoline, diphenhydramine, and phenylephrine in nasal solutions by capillary electrophoresis. J. Pharm. Biomed. Anal. 31, 39 (2003)CrossRefGoogle Scholar
  48. 48.
    Harata, K.: The structure of the cyclodextrin complexes. XIII. Crystal structure of β-cyclodextrin-1,4- diazabicyclo[1.2.2] octane complex tridecahydrate. Bull. Chem. Soc. Japan 55, 2315 (1982)CrossRefGoogle Scholar
  49. 49.
    Liu, L., Guo, Q.-X.: The driving forces in the inclusion complexation of cyclodextrins. J. Incl. Phenom. 42, 1 (2002)CrossRefGoogle Scholar
  50. 50.
    Valero, M., Costa, S.M.B., Ascenso, J.R., Velazquez, M., Rodrıguez, L.J.: Complexation of the non-steroidal anti-inflamCatory drug nabumetone with modified and unmodified cyclodextrins. J. Incl. Phenom. 35, 663 (1999)CrossRefGoogle Scholar
  51. 51.
    Faucci, M.T., Melani, F., Mura, P.: Computer-aided molecular modeling techniques for predicting the stability of drug—cyclodextrin inclusion complexes in aqueous solutions. Chem. Phys. Lett. 358, 383 (2002)CrossRefGoogle Scholar
  52. 52.
    Madrid, J.M., Mendicuti, F., Mattice, W.L.: Cyclic Voltammetric and Scanning Electrochemical Microscopic Study of thiolated β-cyclodextrin adsorbed on a gold electrode. J. Phys. Chem. B 102, 2037 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of ChemistryTaibah UniversityAlmadinah Al-MonawarahKSA
  2. 2.Virginia Bioinformatics InstituteVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  3. 3.Department of Applied Chemical SciencesJordan University of Science and TechnologyIrbidJordan

Personalised recommendations