Stability constants of complexes formed by new Schiff-base lariat ethers derived from 4,13-diaza-18-crown-6 with Ag+, Pb2+, Cu2+ cations determined by competitive potentiometry

  • Aurelia Tar
  • Mihail Barboiu
  • Yves-Marie Legrand
  • Constantin Luca
Original Article

Abstract

The stability of complexes formed by a series of Schiff-base lariat ethers, derived from 4,13-diaza-18-crown-6, 1 with Ag+, Pb2+, Cu2+ cations, has been comparatively determined, in methanol: dichloromethane solution. We present here the synthesis and an interesting competitive potentiometry method useful for the stability constant determination for a new family of Schiff-base bibracchial lariat ethers. The stability constants and the selectivity in competitive complexation of Ag+, Pb2+ and Cu2+ cations by macrocyclic receptors 1–7 (L), can be accurately evaluated and species distribution diagrams can be calculated for individual system. In all cases further functionalization of bibracchial lariat ethers 2–7 is accompanied by an increasing of the selectivity, relative to the complexes of the initial 4,13-diaza-18-crown-6 macrocycle 1.

Keywords

Lariat-ethers 4,13-diaza-18-crown-6 Stability constants Selective complexation Competitive potentiometry 

References

  1. 1.
    Pedersen, C.J.: Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89(26), 7017–7036 (1967)CrossRefGoogle Scholar
  2. 2.
    Lehn, J-.M.: Cryptates: the chemistry of macropolycyclic inclusion complexes. Acc. Chem. Res. 11(2), 49–57 (1978)CrossRefGoogle Scholar
  3. 3.
    Graf, E., Lehn, J.-M.: Cryptates. XVII. Synthesis and cryptate complexes of a spheroidal macrotricyclic ligand with octahedrotetrahedral coordination. J. Am. Chem. Soc. 97(17), 5022–5024 (1975)CrossRefGoogle Scholar
  4. 4.
    Cram, D.J.: Cavitands: organic hosts with enforced cavities. Science 219, 1177–1183 (1983)CrossRefGoogle Scholar
  5. 5.
    Lehn, J.-M., Sauvage, P.J.: Cryptates. XVI. [2]-Cryptates. stability and selectivity of alkali and alkaline-earth macrobicyclic complexes. J. Am. Chem. Soc. 97(23), 6700–6707 (1975)CrossRefGoogle Scholar
  6. 6.
    Lehn, J.-M.: Supramolecular chemistry—scope and perspectives: molecules—supermolecules molecular devices. J. Inclusion Phenom. Mol. Rec. 6, 351–396 (1988)CrossRefGoogle Scholar
  7. 7.
    Izatt, R.M., Pawlak, K., Bradshaw, S.J., Bruening, R.L.: Thermodynamic and kinetic data for macrocycle interactions with cations and anions. Chem. Rev. 91(8), 1721–2085 (1991)CrossRefGoogle Scholar
  8. 8.
    Gokel, G.W., Durst, D.H.: Principles and synthetic applications in crown ether chemistry. Synthesis 3, 168–184 (1976)Google Scholar
  9. 9.
    Lindoy, L.F.: The Chemistry of Macrocyclic Ligand Complexes. Cambridge Univ. Press, Cambridge (1989)Google Scholar
  10. 10.
    Lamb, D.J., Christenson, M.D.: Macrocyclic ligands in sepeartions. J. Incl. Phenom. Macroc. Chem. 32(2–3), 107–119 (1998)CrossRefGoogle Scholar
  11. 11.
    Bond, A.H., Dietz, M.L., Chiarizia, R.: Incorporating size selectivity into synergistic solvent extraction: a review of crown ether-containing systems. Ind. Eng. Chem. Res. 39(10), 3442–3464 (2000)CrossRefGoogle Scholar
  12. 12.
    Hyun, M.H: Development and application of crown ether-based HPLC chiral stationary phases. Bull. Korean Chem. Soc. 26(8), 1153–1163 (2005)CrossRefGoogle Scholar
  13. 13.
    Moyer, B.A., Bonnesen, P.V., Custelcean, R., Delmau, L.H., Hay, B.P.: Strategies for using host-guest chemistry in the extractive separations of ionic guests. Kem. Ind. 54(2), 65–87 (2005)Google Scholar
  14. 14.
    Tsukube, H.: Double armed crown ethers and armed macrocycles as a new series of metal-selective reagents: a review. Talanta 40(9), 1313–1324 (1993)CrossRefGoogle Scholar
  15. 15.
    Luca, C., Tanase, I., Josceanu, A.M.: Applications of Supramolecular Chemistry. Ed. Tehnica, Bucuresti (1996)Google Scholar
  16. 16.
    Cronin, L.: Macrocyclic and supramolecular coordination chemistry—review article. Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem. 100, 323–383 (2004)CrossRefGoogle Scholar
  17. 17.
    Hartley, H.J., James, T.D., Ward, C.J.: Synthetic receptors. J. Chem .Soc. Perkin Trans.1 Review Perkin 19, 3155–3184 (2000)Google Scholar
  18. 18.
    Lehn, J.-M.: Supramolecular Chemistry-Concept and Perspectives. VCH, Weinheim (1995)Google Scholar
  19. 19.
    Lehn, J.M.: Supramolecular chemistry and self-assembly special feature: toward complex matter: supramolecular chemistry and self-organization. Proc. Nat. Acad. Sci. 99, 4763–4796 (2002)CrossRefGoogle Scholar
  20. 20.
    Lehn, J.M.: Toward self-organization and complex matter. Science 295, 2400–2403 (2002)CrossRefGoogle Scholar
  21. 21.
    Lehn, J.M.: Dynamers: dynamic molecular and supramolecular polymers. Prog. Polym. Sci. 30, 814–831 (2005)CrossRefGoogle Scholar
  22. 22.
    Quesada, R., Gale, P.A.: Supramolecular chemistry. Annu. Rep. Prog. Chem., Sect. B: Org. Chem. 101, 148–170 (2005)CrossRefGoogle Scholar
  23. 23.
    Pletnev, I.V.: Macrocyclic chemistry: current trend and future perspectives. J. Anal. Chem. 61(8), 819–821 (2006)CrossRefGoogle Scholar
  24. 24.
    Gokel, G.W., Mukhopadhyay, A.: Synthetic models of cation-conducting channels. Chem. Soc. Rev. 30, 274–287 (2001)CrossRefGoogle Scholar
  25. 25.
    Voyer, N.: Topics in Current Chemistry, pp. 1–35. Springer-Verlag, Berlin, Heidelberg (1996)Google Scholar
  26. 26.
    Bong, D.T., Clark, T.D., Granja, J.R., Ghadiri, M.R.: Self-assembling organic nanotubes. Angew. Chem. Int. Ed. 40(6), 988–1011 (2001)CrossRefGoogle Scholar
  27. 27.
    Eggers, P.K., Fyles, T.M., Mitchell, K.D.D., Sutherland, T.: Ion channels from linear and branched bola-amphiphiles. J. Org. Chem. 68(3), 1050–1058 (2003)CrossRefGoogle Scholar
  28. 28.
    Barboiu, M., Vaughan, G., van der Lee, A.: Self-organized heteroditopic macrocyclic superstructures. Org. Lett. 5(17), 3073–3076 (2003)CrossRefGoogle Scholar
  29. 29.
    Barboiu, M.: Supramolecular polymeric macrocyclic receptors - hybrid carrier vs. channel transporters in bulk liquid membranes. J. Incl. Phenom. Mol. Rec. 49, 133–137 (2004)CrossRefGoogle Scholar
  30. 30.
    Barboiu, M, Cerneaux, S., Vaughan, G., van der Lee, A.: Ion-driven atp pump by self-organized hybrid membrane materials. J. Am. Chem. Soc. 126(11), 3545–3550 (2004)CrossRefGoogle Scholar
  31. 31.
    Barboiu, M.: Dynamic supramolecular materials. Paper Presented at European Young Investigator Awardees Symposium EURYIAS2006, ISIS-ULP, Strasbourg, France, 29 Nov–2 Dec, 2006Google Scholar
  32. 32.
    Gokel, G.W.: Crown Ethers and Cryptands. The Royal Society of Chemistry, Cambridge (1991)Google Scholar
  33. 33.
    Gokel, G.W.: Lariat ethers: from simple sidearms to supramolecular systems. Chem. Soc. Rev. 21, 39–49 (1992)CrossRefGoogle Scholar
  34. 34.
    Gatto, V.J. Gokel, G.W.: Syntheses of calcium-selective, substituted diaza-crown ethers: a novel, one-step formation of bibracchial lariat ethers (BiBLES). J. Am. Chem. Soc. 106(26), 8240–8244 (1984)CrossRefGoogle Scholar
  35. 35.
    Esteban, D., Banobre D., Bastida R., de Blas, A., Macias A., Rodriguez, A., Rodriguez-Blas, T., Fenton, D.E., Adams, H., Mahia, J.: Barium templating schiff-base lateral macrobicycles. Inorg. Chem. 38(8), 1937–1944 (1999)CrossRefGoogle Scholar
  36. 36.
    Esteban, D., Banobre, D., de Blas, A., Rodriguez-Blas, T., Bastida, R., Macias, A., Rodriguez, A., Fenton, D.E., Adams, H., Mahia, J.: Cadmium(II) and lead(II) complexes with novel macrocyclic receptors derived from 1,10-Diaza-15-crown-5. Eur. J. Inorg. Chem. 7, 1445–1456 (2000)CrossRefGoogle Scholar
  37. 37.
    Rodriguez-Infante, C., Esteban, D., Avecilla, F., de Blas, A., Rodriguez-Blas, T., Mahia, J., Macedo, A.L., Geraldes, C.F.G.C.: Copper complexes with bibracchial lariat ethers: from mono- to binuclear structures. Inorg. Chim. Acta 317, 190–198 (2001)CrossRefGoogle Scholar
  38. 38.
    Platas, C., Avecilla, F., de Blas, A., Rodriguez-Blas, T., Bastida, R., Macias, A., Rodriguez, A., Adams, H.: A Schiff-base bibracchial lariat ether selective receptor for lanthanide(III) ions. J. Chem. Soc., Dalton Trans. 1699–1705 (2001)Google Scholar
  39. 39.
    Gonzalez-Lorenzo, M., Platas, C., Avecilla, F., Geraldes, C.F.G.C., Imbert, D., Bunzli, J.-C.G., de Blas, A., Rodriguez-Blas, T.: A Schiff-base bibracchial lariat ether forming a cryptand-like cavity for lanthanide ions. Inorg. Chem. 42(21), 6946–6954 (2003)CrossRefGoogle Scholar
  40. 40.
    Esteban, D., Ferreiros, R., Fernandez-Martinez, S., Avecilla, F., Platas, C., de Blas, A., Rodriguez-Blas, T.: Lateral macrobicyclic architectures: toward new lead(II) sequestering agents. Inorg. Chem. 44(15), 5428–5436 (2005)CrossRefGoogle Scholar
  41. 41.
    Esteban, D., Avecilla, F., Platas, C., Mahia, J., de Bals, A., Rodriguez-Blas, T.: Lead(II) complexes with macrocyclic receptors derived from 4,13-Diaza-18-crown-6. Inorg. Chem. 41(17), 4337–4347 (2002)CrossRefGoogle Scholar
  42. 42.
    Buschmann, H.-J., Schollmeyer, E., Trultzsch, R., Beger, J.: Complexation of silver(I) with different substituted diaza-18-crown-6 ethers in methanol. J. Trans. Met. Chem. 27(3), 295–298 (2002)CrossRefGoogle Scholar
  43. 43.
    Gokel, G.W., Korzeniwski, S. H.: Macrocyclic Polyether Syntheses. Springer, Berlin (1982)Google Scholar
  44. 44.
    Nakatsuji, Y., Nakamura, T., Yometani, M., Yuya, H., Okahara, M.: molecular design of the electron-donating sidearm of lariat ethers: effective coordination of the quinoline moiety in complexation toward alkali-metal cations. J. Am. Chem. Soc. 110(2), 531–538 (1988)CrossRefGoogle Scholar
  45. 45.
    Sil, A., Vijaykumar, S.I., Srivastava, A.K.: Stability constants of some macrocyclic complexes of Ag(I) and Cu(II) in mixed solvents by potentiometry. Supramol. Chem. 15(6), 451–457 (2003)CrossRefGoogle Scholar
  46. 46.
    Buschmann, H.-J., Hermann, J., Kaupp, M., Plenio, H.: The coordination chemistry of the CF group of fluorocarbons: thermodynamic data and Ab initio calculations on CF ± metal ion interactions. Chem. Eur. J. 5(9), 2566–2572 (1999)CrossRefGoogle Scholar
  47. 47.
    Pouretedal, H.D., Shamsipur, M.: Competitive potentiometric study of complexation of some organoammonium ions with selected crown ethers in ethanol solution using Ag+ ion as a probe. J. Chem. Eng. Data 43(5), 742–744 (1998)CrossRefGoogle Scholar
  48. 48.
    Buschmann, H.J., Cleve, E., Torkler, S., Schollmeyer, E.: The determination of complex stabilities with nearly insoluble host molecules. Complexation of barium(II) with substituted diaza-18-crown-6 ligands in aqueous and methanolic solutions. Talanta 51, 145–149 (2000)CrossRefGoogle Scholar
  49. 49.
    Zolgharnein, J., Azimi, G., Habibi, M.: Competitive potentiometric study of a series of 18-crown-6 with Pb2+, Ag+, and Tl+ions in methanol using Ag+/Ag electrode. Pol. J. Chem. 78(6), 795–802 (2004)Google Scholar
  50. 50.
    Sil, A., Srivastava, A.K.: Studies on the complexation of transition metal ions with macrocyclic compounds in mixed solvents by competitive potentiometry and polarography. Supramol. Chem. 16(5), 343–351 (2004)CrossRefGoogle Scholar
  51. 51.
    Caridade, C.J.M., Rodrigues, P.M.S.: Complexation study of alkali metal ions by crown ether derivatives in nonaqueous solvents by potentiometric methods. Port. Electrochim Acta. 20, 167–178 (2002)CrossRefGoogle Scholar
  52. 52.
    Shamsipur, M., Zolgharnein, J.: Competitive potentiometric study of the thermodynamics of complexation of some transition and heavy metal ions with Dibenzopyridino-18-crown-6 in methanol using Ag+ ion as a probe. J. Incl. Phenom. Macro. Chem. 40(1–2), 41–44 (2001)CrossRefGoogle Scholar
  53. 53.
    Funasaki, N., Nagaoka, M., Hirota, S.: Competitive potentiometric determination of binding constants between α-cyclodextrin and 1-alkanols. Anal. Chim. Acta 531(1), 147–151 (2005)CrossRefGoogle Scholar
  54. 54.
    Luca, C., Enea, O.: Determinarea constantelor analitice. Metode electrometrice si optice. Ed. Didactica si Pedagogica, Bucuresti, p. 24 (1971)Google Scholar
  55. 55.
    Badescu, V.R., Luca, C.: The determination of the βM stability constants for the UO22+, Pb2+, Cd2+, Cu2+, Ba2+, Sr2+ cryptates with the Hexaoxa-diazabicyclohexacosan (222) cryptand. Rev. Chim.—SChR 57(9), 915–918 (2006)Google Scholar
  56. 56.
    Arnaud-Neu, F., Spiess, B., Schwing-Weill, M.J.: Solvent effects in the complexation of [2]-cryptands and related monocycles with transition- and heavy-metal cations. J. Am. Chem. Soc. 104(21), 5641–5645 (1982)CrossRefGoogle Scholar
  57. 57.
    Zolgharnein, J., Tahmasebi, H., Habibi, M., Amani, S.: Complexation study of alkali metal ions by crown ether derivatives in nonaqueous solvents by potentiometric methods. J. Incl. Phenom. Macroc. Chem. 49, 231–234 (2004)CrossRefGoogle Scholar
  58. 58.
    Frensdorff, H.K.: Stability constants of cyclic polyether complexes with univalent cations. J. Am. Chem. Soc. 93(3), 600–606 (1971)CrossRefGoogle Scholar
  59. 59.
    Kolthoff, I.M.: Application of macrocyclic compounds in chemical analysis. Anal. Chem. 51(5), 1R–22R (1979)CrossRefGoogle Scholar
  60. 60.
    Rodopoulos, T., Pittet, P.-A., Lincoln, S.F.: Complexation of monovalent metal ions by lariat ethers in non-aqueous solvents. J. Chem. Soc. Dalton Trans. 7, 1055–1060 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Aurelia Tar
    • 1
  • Mihail Barboiu
    • 2
  • Yves-Marie Legrand
    • 2
  • Constantin Luca
    • 1
  1. 1.Analytical Chemistry and Instrumental Analysis Department, Faculty of Applied Chemistry and Material ScienceUniversity “Politehnica” BucharestBucharestRomania
  2. 2.Institut Européen des MembranesMontpellier, Cedex 5France

Personalised recommendations