Competitive thermodynamic and kinetic processes during dissociation of some host-guest complexes of calix[4]arene derivatives

  • Beáta Peles-Lemli
  • János Peles-Lemli
  • István Bitter
  • László Kollár
  • Géza Nagy
  • Sándor Kunsági-Máté
Original Article

Abstract

The formation-dissociation dynamics of the calixarenes’ host-guest complexes is one of the key features both in sensor applications and in use as molecular containers. The thermodynamic and kinetic description of the formation-dissociation processes could help in developing procedures to design new molecular capsules. In this work the dissociation dynamics of calix[4]arenes and p-chloro-trifluoromethylbenzene complexes was studied with molecular dynamics calculations. According to their binding selectivity, calix[4]arene, 4-methylcalix[4]arene and 4-tert-butylcalix[4]arene were chosen as host model-compounds. Results show significantly different temperature dependence of the reaction rate on various groups (H, Me, tBu) substituted at the upper rim of calixarene skeleton. This property reflects the competitive thermodynamic and kinetic processes during the complex dissociation. Our related experimental results obtained by DSC method seem to validate the theoretical results.

Keywords

Complex formation Molecular capsules Rate of dissociation Molecular dynamics 

References

  1. 1.
    Gutsche, C.D.: Monographs in Supramolecular Chemistry Vol. 1. Calixarenes. The Royal Society of Chemistry, Cambridge (1989)Google Scholar
  2. 2.
    Gutsche, C.D.: Monographs in Supramolecular Chemistry Vol. 6 Calixarenes Revisited. The Royal Society of Chemistry, Cambridge (1998)Google Scholar
  3. 3.
    Zyryanov, G.V., Kang, Y., Rudkevich, D.M.: Sensing and fixation of NO2/N2O4 by calix[4]arenes. J. Am. Chem. Soc. 125, 2997 (2003)CrossRefGoogle Scholar
  4. 4.
    Haino, T., Fukunaga, C., Fukazawa, Y.: A new calix[5]arene-based container: selective extraction of higher fullerenes. Org. Lett. 8(16), 3545 (2006)CrossRefGoogle Scholar
  5. 5.
    Nielsen, K.A., Cho, W.-S., Lyskawa, J., Levillain, E., Lynch, V.M., Sessler, J.L., Jeppesen, J.O.: Tetrathiafulvalene-calix[4]pyrroles: Synthesis, anion binding, and electrochemical properties. J. Am. Chem. Soc. 128, 2444 (2006)CrossRefGoogle Scholar
  6. 6.
    Kerdpaiboon, N., Tomapatanaget, B., Chailapakul, O., Tuntulani, T.: Calix[4]quinones derived from double calix[4]arenes: Synthesis, complexation and electrochemical properties toward alkali metal ions. J. Org. Chem. 70, 4797 (2005)CrossRefGoogle Scholar
  7. 7.
    Mohammed-Ziegler, I., Grün, A.: Complex formation between aliphatic amines and chromogenic calix[4]arene derivatives studied by FT-IR spectroscopy. Spectrochim. Act. A 62, 506 (2005)CrossRefGoogle Scholar
  8. 8.
    Arena, G., Gentile, S., Gulino, F.G., Sciotto, D., Sgarlata, C.: Water-soluble pentasulfonatocalix[5]arene: selective recognition of ditopic trimethylammonium cations by a triple non-covalent interaction. Tetrahedron Lett. 45, 7091 (2004)CrossRefGoogle Scholar
  9. 9.
    Alema´n, C., den Otter, W.K., Tolpekina, T.V., Briels, W.J.: Impact of the solvent on the conformational isomerism of calix[4]arenes: A study based on continuum solvation models. J. Org. Chem. 69, 951 (2004)CrossRefGoogle Scholar
  10. 10.
    Mendes, A., Bonal, C., Morel-Desrosiers, N., Morel, J.P., Malfreyt, P.: Molecular dynamics simulations of p-sulfonatocalix[4]arene complexes with inorganic and organic cations in water: A structural and thermodynamic study. J. Phys. Chem. B. 106, 4516 (2002)CrossRefGoogle Scholar
  11. 11.
    Ghoufi, A., Morel, J.P., Morel-Desrosiers, N., Malfreyt, P.: MD simulations of the binding of alcohols and Diols by calixarene in water: Connections between microscopic and macroscopic properties. J. Phys. Chem. B 109, 23579 (2005)CrossRefGoogle Scholar
  12. 12.
    Sieffert, N., Wipff, G.: Alkali cation extraction by calix[4]crown-6 to room-temperature ionic liquids. The effect of solvent anion and humidity investigated by molecular dynamics simulations. J. Phys. Chem. A 110, 1106 (2006)CrossRefGoogle Scholar
  13. 13.
    Coupez, B., Wipff, G.: The synergistic effect of cobalt-dicarbollide anions on the extraction of M3+ lanthanide cations by calix[4]arenes: A molecular dynamics study at the water-‘oil’ interface. C.R. Chimie 7, 1153 (2004)Google Scholar
  14. 14.
    Kunsági-Máté, S., Nagy, G., Kollár, L.: Host-guest interaction of calixarene molecules with neutral benzotrifluorides – Comparsion of luminescence spectral data with results of model calculations relating to complex formation. Anal. Chim. Acta 428, 301 (2001)CrossRefGoogle Scholar
  15. 15.
    Kunsági-Máté, S., Nagy, G., Kollár, L.: Investigation of the interaction of calixarene (host) and neutral benzotrifluoride (guest) – Comparison of luminescence characteristics of calixarenes with results of model calculations relating to complex formation. Sens. Actuators B 76, 545 (2001)CrossRefGoogle Scholar
  16. 16.
    Kunsági-Máté, S., Bitter, I., Grün, A., Nagy, G., Kollár, L.: Cavity shaped host-guest interaction of distally dialkylated calix[4]arenes with 1-chloro-4-(trifluoromethyl)benzene. Anal. Chim. Acta 443, 227 (2001)CrossRefGoogle Scholar
  17. 17.
    Kunsági-Máté, S., Nagy, G., Jurecka, P., Kollár, L.: Complex formation between 1-chloro-4-(trifluoromethyl)benzene (guest) and 4-tert-butylcalix[4]arenes (host) distally substituted with phosphonic acid or phosphonic ester groups at the lower rim. Tetrahedron 58, 5119 (2002)CrossRefGoogle Scholar
  18. 18.
    Kunsági-Máté, S., Bitter, I., Grün, A., Nagy, G., Kollár, L.: Solvent effect on the complex formation of distally dialkylated calix[4]arenes with 1-chloro-4-(trifluoromethyl)benzene. Anal.Chim. Acta 461, 273 (2002)CrossRefGoogle Scholar
  19. 19.
    Kunsági-Máté, S., Szabó, K., Lemli, B., Bitter, I., Nagy, G., Kollár, L.: Increased complexation ability of water-soluble calix[4]resorcinarene octacarboxylate toward phenol by the assistance of Fe(II) ions. J. Phys. Chem. B 108, 15519 (2004)CrossRefGoogle Scholar
  20. 20.
    Kunsági-Máté, S., Szabó, K., Lemli, B., Bitter, I., Nagy, G., Kollár, L.: Host-guest interaction between water-soluble calix[6]arene hexasulfonate and p-nitrophenol. Thermochim. Acta 425, 121 (2005)CrossRefGoogle Scholar
  21. 21.
    Kunsági-Máté, S., Szabó, K., Bitter, I., Nagy, G., Kollár, L.: Unexpected effect of charge density of the aromatic guests on the stability of calix[6]arene phenol host-guest complexes. J. Phys. Chem. A 109, 5237 (2005)CrossRefGoogle Scholar
  22. 22.
    Kunsági-Máté, S., Szabó, K., Bitter, I., Nagy, G., Kollár, L.: Complex formation between water-soluble sulfonated calixarenes and C-60 fullerene. Tetrahedron Lett. 45, 1387 (2004)CrossRefGoogle Scholar
  23. 23.
    Lemli, B., Peles, J., Kollár, L., Nagy, G., Kunsági-Máté, S.: The rate of host-guest complex formation of some calixarene derivatives towards neutral aromatic guests. Supramol. Chem. 18(3), 251 (2006)CrossRefGoogle Scholar
  24. 24.
    Gutsche, C.D., Lin, L.-G.: Calixarenes.12. The synthesis of functionalised calixarenes. Tetrahedron 42, 1633 (1986)CrossRefGoogle Scholar
  25. 25.
    Almi, M., Arduini, A., Casnati, A., Pochini, A., Ungaro, R.: Chloromethylation of calixarenes and synthesis of new water-soluble macrocyclic hosts. Tetrahedron 45, 2177 (1989)CrossRefGoogle Scholar
  26. 26.
    Gutsche, C.D., Iqbal, M., Stewart, D.: Calixarenes.18. Synthesis procedures for para-tert-butylcalix[4]arene. J. Org. Chem. 51, 742 (1986)CrossRefGoogle Scholar
  27. 27.
    Gaussian 03, Revision C.02, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A. Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian, Inc., Wallingford CT, (2004)Google Scholar
  28. 28.
    HyperChem Professional 7, HyperCube, (2002)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Beáta Peles-Lemli
    • 1
  • János Peles-Lemli
    • 1
  • István Bitter
    • 2
  • László Kollár
    • 3
  • Géza Nagy
    • 1
  • Sándor Kunsági-Máté
    • 1
  1. 1.Department of General and Physical ChemistryUniversity of PécsPecsHungary
  2. 2.Department of Organic Chemical TechnologyBudapest University of Technology and EconomicsBudapestHungary
  3. 3.Department of Inorganic ChemistryUniversity of PécsPecsHungary

Personalised recommendations