Spectroscopic investigation of Rose Bengal/cyclodextrin interactions in aqueous solution: the case of the hydroxypropyl-cyclodextrins

  • P. FiniEmail author
  • L. Catucci
  • M. Castagnolo
  • P. Cosma
  • V. Pluchinotta
  • A. Agostiano
Original Article


The interaction of Rose Bengal (RB) with hydroxypropyl-α-cyclodextrin (HP-α-CD), hydroxypropyl-β-cyclodextrin (HP-β-CD) and hydroxypropyl-γ-cyclodextrin (HP-γ-CD) has been studied in water and in acetate buffer at pH 4.5 by UV–Vis absorption, fluorescence spectroscopy and Induced Circular Dichroism at 298 K. Evidence of the complex formation between the RB and all HP-CDs have been obtained both in water and in buffer. Binding constants and stoichiometry of RB/HP-CD complexes in water have been determined by applying the modified Benesi-Hildebrand equation to the fluorescence measurements.


Rose Bengal Aqueous solutions Hydroxypropyl-Cyclodextrins Inclusion complexes pH 


  1. 1.
    Murasecco-Suardi, P., Gassmann, E., M.Braun, A., Oliveros, E.: Determination of the quantum yield of intersystem crossing of Rose Bengal. Helv. Chim. Acta 70, 1760–1773 (1987)CrossRefGoogle Scholar
  2. 2.
    Islam, S.D.M., Ito, O.: Solvent effects on rates of photochemical reaction of Rose Bengal triple state studied by nanosecond laser photolysis. J. Photochem. Photobiol. A Chem. 123, 53–59 (1999)CrossRefGoogle Scholar
  3. 3.
    Flamigni, L.: Inclusion of fluorescein and halogenated derivatives in a, b and g cyclodextrins. A steady state and picosecond time resolved study. J. Phys. Chem 97, 9566–9572 (1993)CrossRefGoogle Scholar
  4. 4.
    Bahadur, L., Roy, L.: A binary mixture of dyes (2-imidazolin-5-one and Rose Bengal) for photosensitization of n-ZnO thin film electrodes in aqueous and acetonitrile media. J. Appl. Electrochem. 29, 109–116 (1999)CrossRefGoogle Scholar
  5. 5.
    Daraio, M.E., San Roma'n, E.: Aggregation and photophysics of Rose Bengal in Alumina-coated colloidal suspensions. Helv. Chim. Acta 84, 2601–2614 (2001)CrossRefGoogle Scholar
  6. 6.
    Miller, J.S.: Rose Bengal-sensitized photooxidation of 2-chlorophenol in water using solar simulated light. Water Res. 39, 412–422 (2005)CrossRefGoogle Scholar
  7. 7.
    Seitzman, G.D., Cevallos, V., Margolis, T.P.: Rose Bengal and Lissamine green inhibit detection of herpes simplex virus by PCR. Am. J. Ophthalmol. 141(4), 756–758 (2006)CrossRefGoogle Scholar
  8. 8.
    Becker, R.S.: Theory and interpretation of fluorescence and phosphorescence, Wiley Interscience, cap. 4 and 10 (1969)Google Scholar
  9. 9.
    Kohen, E., Santus, R., Hirschberg, J.G.: Photobiology. Academic Press, London, cap.4 and 5 (1995)Google Scholar
  10. 10.
    Flamigni L.: Effects of complexation by cyclodextrins on the photoreactivity of Rose Bengal and erythrosin B. J. Chem. Soc. Faraday Trans. 90(16), 2331–2336 (1994)CrossRefGoogle Scholar
  11. 11.
    Fini, P., Castagnolo, M., Catucci, L., Cosma, P., Agostiano, A.: Inclusion complexes of Rose Bengal and cyclodextrins. Thermochim. Acta 418, 33–38 (2004)CrossRefGoogle Scholar
  12. 12.
    Fini, P., Longobardi, F., Catucci, L., Cosma, P., Agostiano, A.: Spectroscopic and electrochemical study of Rose Bengal in aqueous solutions of cyclodextrins. Bioelectrochemistry 63, 107–110 (2004)CrossRefGoogle Scholar
  13. 13.
    Fini, P., Loseto, R., Catucci, L., Cosma, P. Agostiano, A.: Study on the aggregation and electrochemical properties of Rose Bengal in aqueous solution of cyclodextrins. Bioelectrochemistry, in press.Google Scholar
  14. 14.
    Islam, S.D.M., Ito, O.: Solvent effects on rates of photochemical reactions of Rose Bengal triplet state studied by nanosecond laser photolysis. J. Photochem. Photobiol. A, Chem. 123, 53–59 (1999)CrossRefGoogle Scholar
  15. 15.
    Indirapriyadharshini, V.K., Karunanity, P., Ramamurthy, P.: Inclusion of resorcinol-based acridinedione dyes in cyclodextrins: fluorescence enhancement. Langmuir 17, 4056–4060 (2001)Google Scholar
  16. 16.
    Kodata, M.: Application of a general rule to induced dichroism of naphtalene derivatives complexed with cyclodextrins. J. Phys. Chem. A 102, 8101–8103 (1998)CrossRefGoogle Scholar
  17. 17.
    Kodata, M.: Sign of circular dichroism induced by b-cyclodextrin. J. Phys. Chem. A 95, 2110–2112 (1991)CrossRefGoogle Scholar
  18. 18.
    Krois, D., Brinker, U.H.: Induced circular dichroism and UV-Vis absorption spectroscopy of cyclodextrin inclusion complexes: structural elucidation of supramolecular azi-adamantane (Spiro[adamantine-2,3′-diazirinel). J. Am. Chem. Soc 120, 11627–11632 (1998)CrossRefGoogle Scholar
  19. 19.
    Hamai, S., Koshiyama, T.: Electronic absorption, fluorescence, and circular dichroism spectroscopic studies on the inclusion complexes of tetrakis (4-sulfonatophenyl) porphyrin with cyclodextrins in basic aqueous solutions. J. Photochem. Photobiol. A, Chem. 127, 135–141 (1999)CrossRefGoogle Scholar
  20. 20.
    Linden, S.M., Neckers, D.C.: Type I and Type II sensitizer based on Rose Bengal onium salts. Photochem. Photobiol. 47(4), 543 (1988)Google Scholar
  21. 21.
    Jha, S.K., Srivastava, S.N.: Electrode kinetics of polarographic reduction of Rose Bengal B. Acta Chim. (Budapest) 80, 375–383 (1974)Google Scholar
  22. 22.
    Rajewski, R.A., Stella, V.J.: Pharmaceutical applications of cyclodextrins. 11. In vivo drug delivery. J. Pharm. Sci 85, 1142–1169 (1996)CrossRefGoogle Scholar
  23. 23.
    Dodziuk, H.: Rigidity versus flexibility. A review of experimental and theoretical studies pertaining to the cyclodextrin nonrigidity. J. Mol. Struct. 614, 33–45 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • P. Fini
    • 1
    Email author
  • L. Catucci
    • 1
    • 2
  • M. Castagnolo
    • 2
  • P. Cosma
    • 1
    • 2
  • V. Pluchinotta
    • 2
  • A. Agostiano
    • 1
    • 2
  1. 1.Istituto per i Processi Chimico Fisici (IPCF) CNRBariItaly
  2. 2.Dipartimento di ChimicaUniversita’ di BariBariItaly

Personalised recommendations