In vitro study of a HPγ-cyclodextrin grafted PET vascular prosthesis for application as anti-infectious drug delivery system

  • N. Blanchemain
  • T. Laurent
  • S. Haulon
  • M. Traisnel
  • C. Neut
  • J. Kirkpatrick
  • M. Morcellet
  • H. F. Hildebrand
  • Bernard Martel
Original Article


Hydroxypropyl-γ-cyclodextrin (HPγ-CD) was grafted onto woven polyester (PET) vascular prosthesis by using citric acid (CTR) as crosslinking agent. A polyCTR-HPγ CD polymer was physically fixed onto the PET fibers. An optimal compromise between fixation temperature and fixation time was found and a grafting rate of 6.7% was obtained. The study of the inclusion of ciprofloxacin (CFX) and HPγ-CD was evidenced by using spectrophotometry. Sorption tests also showed that modified prosthesis could adsorb 5 times more CFX than the control. Biological tests revealed proliferation rates of human pulmonary micro-vascular endothelial cells (HPMEC) of 73 and 48% on virgin and modified prostheses respectively. We demonstrated that this was rather due to the increase of surface roughness of the fibers after their modification than to a toxic effect the polyCTR-HPγCD polymer coating. Prostheses samples modified with HPγCD and impregnated with CFX stayed up to 24 h in blood plasma. At various moments some aliquots were withdrawn from the medium and a positive antibacterial activity against Staphylococcus epidermidis was observed within the 24 h period for the grafted sample, whilst that of the virgin one had disappeared within 4 h. So, cyclodextrin coating of vascular prostheses may be suitable for the controlled release of CFX, and thus should help to the prevention of post surgery complications.

Key words

Polyester vascular prosthesis Cyclodextrins Grafting Biocompatibility Endothelial cells Microbiology Ciprofloxacin Staphylococcus epidermidis 


  1. 1.
    Haulon, S., Devos, P., Willoteaux, S., Mounier, C-Vehier, Sokoloff, A., Halna, P., J.Beregi P., Koussa, M.: Risk factors of early and late complications in patients undergoing endovascular aneurysm repair. Eur. J. Vasc. Endovasc. Surg. 25, 118–124 (2003)CrossRefGoogle Scholar
  2. 2.
    O’Brien, T., Collin, J.: Prosthetic vascular graft infection. Br. Surg. J. 79, 1262–1267 (1992)CrossRefGoogle Scholar
  3. 3.
    Schierholz, J.M., Lucas, LJ., Rump, A., Pulverer, G.: Efficacy of silver-coated medical devices. J. Hosp. Infect. 40, 257–262 (1998)CrossRefGoogle Scholar
  4. 4.
    Malasiney, p., Goeau, Brissonière, O., Coggia, M., Pechère, J.C.: Rifampicin loading of vascular grafts. J. Antimicrob. Chemother. 37, 1121–1129 (1996)CrossRefGoogle Scholar
  5. 5.
    Goeau-Brissonniere, O., Fabre, D., Leflon, V., Di Centa, I., Nicolas, M.H., Coggia, M.: Comparison of the resistance to infection of rifampicin bonded gelatin sealed and silver collagen coated polyester prostheses. J.Vasc. Surg. 35, 1260–1263 (2002)CrossRefGoogle Scholar
  6. 6.
    Loftsson, T, Brewster, M.E.: Pharmaceutical applications of cyclodextrins: 1. Drug solubilization and stabilization. J. Pharm. Sci. 85, 1017–1025 (1996)CrossRefGoogle Scholar
  7. 7.
    Elgoul, Y., Martel, B., Morcellet, M., Campagne, C., El Achari, A.: Finishing of polyamide fabrics with cyclodextrins–Polycarboxylic acids polymers, 12th International Cyclodextrin Symposium, pp. 651–654. Montpellier, France (2004)Google Scholar
  8. 8.
    Martel, B., Morcellet, M., Ruffin, D., Ducoroy, L., et Weltrowski, M.: Finishing of polyester fabrics with cyclodextrins and polycarboxylic acids as crosslinking agents. J. Incl. Phenom. and Mol. Recognit. Chem. 44, 443–446 (2002)Google Scholar
  9. 9.
    Jianbin, C., Liang, C., Hao, X., Dongpin, M.: Preparation and study on the solid inclusion complex of ciprofloxacin with β-CD. Spectrochim. Act. [A] 58, 2809–2815 (2002)CrossRefGoogle Scholar
  10. 10.
    Jianbin, C., Dongpin, M., Li, J., Huang, S.: Preparation and study on the novel solid inclusion complex of ciprofloxacin with HPβ-CD. Spectrochim. Act.[A] 60, 729–734, (2004)CrossRefGoogle Scholar
  11. 11.
    Martel, B., Morcellet, M., Weltrowski, M. PCT/FR00/00378, EP 1165621 (2000); US 6,660,804 B1 (2003) WO 00/047630Google Scholar
  12. 12.
    Martel, B., Blanchemain, N., Boschin, F., Haulon, S., Delcourt-Debruyne, E., Hildebrand H.F., Morcellet, M.: Patent application PCTFR20050022829Google Scholar
  13. 13.
    Bergeron, R.J., Roberts, W.P.: Boundary conditions for the Hildebrand-Benesi. Anal. Biochem. 90, 844–848 (1978)CrossRefGoogle Scholar
  14. 14.
    Konvalinkova, V.K., Bittinger, F., Unger, R.E., Peters, K., Lehr, H.A., Kirkpatrick, J.: Generation of human pulmonary microvascular endothelial cell line. Lab. Invest. 81, 1717–1727 (2001)Google Scholar
  15. 15.
    Hornez, J.C., Lefèvre, A., Joly, D., Hildebrand, H.F.: Multiple parameter cytotoxicity index on dental alloys and pure metals. Biomol. Eng. 19, 103–118 (2002)CrossRefGoogle Scholar
  16. 16.
    Mayer, G., Blanchemain, N., Dupas-Bruzek, C., Traisnel, M., Derozier, D., Laude, L.D., Hildebrand, H.F.: Biological improvements of PET by excimer laser irradiation. Key Eng. Mat. 288–289, 633–636 (2005)Google Scholar
  17. 17.
    Scott, C.P., Higham, P.A.: Antibiotic bone cement for the treatment of pseudomonas aeruginosa in joint arthroplasty: comparison of tobramycin and gentamicin-loaded cements. J. Biomed. Mat. Res. 64B, 94–98 (2003)CrossRefGoogle Scholar
  18. 18.
    Blanchemain, N, Haulon, S., Boschin, F., Marcon-Bachari, E., Traisnel, M., Morcellet, M., Hildebrand, H.F, Martel, B.: Vascular Prostheses with controlled release of antibiotics–Part 1: surface modifications with cyclodextrin of PET vascular prostheses. Biomol. Eng. (in press), (published online DOI 10.1007/s10847-006-9264-1)Google Scholar
  19. 19.
    Blanchemain, N., Haulon, S., Boschin, F., Traisnel, M., Morcellet, M., Martel, B., Hildebrand, H.F.: Vascular prostheses with controlled release of antibiotics–Part 2: In vivo biological evaluation of vascular prostheses treated by cyclodextrins. Biomol. Eng. (in press), (published online DOI 10.1007/s10847-006-9264-1) Google Scholar
  20. 20.
    Blanchemain, N., Haulon, S., Martel, B., Traisnel, M., Morcellet, M., Hildebrand, H.F.: Vascular PET prostheses surface modification with cyclodextrin coating: development of a new drug delivery system. Europ. J. Vasc. Endovasc. Surg. 29, 628–632 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • N. Blanchemain
    • 1
    • 2
  • T. Laurent
    • 1
  • S. Haulon
    • 2
  • M. Traisnel
    • 3
  • C. Neut
    • 4
  • J. Kirkpatrick
    • 5
  • M. Morcellet
    • 1
  • H. F. Hildebrand
    • 2
  • Bernard Martel
    • 1
  1. 1.Laboratoire de Chimie Organique et MacromoléculaireUMR-CNRS 8009, USTLVilleneuve D’AscqFrance
  2. 2.Faculté de MédecineGroupe de Recherche sur les Biomatériaux, EA 1049LilleFrance
  3. 3.Laboratoire de Procédés et d’Elaboration de Revêtements FonctionnelsUPRES EA 1040, ENSCLVilleneuve D’AscqFrance
  4. 4.Laboratoire de Bactériologie Clinique, Faculté de PharmacieINSERM U 795LilleFrance
  5. 5.Institute of PathologyJohannes Gutenberg UniversityMainzGermany

Personalised recommendations