Conductance Study of the Thermodynamics of Complexation of K+, Rb+, Cs+ and Tl+ Ions with Dibenzo-24-crown-8 in Binary Acetonitrile–Nitromethane Mixtures

  • Mehdi Taghdiri
  • Mohammad Kazem Rofouei
  • Mojtaba Shamsipur


The complexation reactions between dibenzo-24-crown-8 (DB24C8) and K+, Rb+, Cs+ and Tl+ ions were studied conductometrically in different acetonitrile–nitromethane mixtures at various temperatures. The formation constants of the resulting 1:1 complexes were calculated from the computer fitting of the molar conductance–mole ratio data at different temperatures. At 25 °C and in all solvent mixtures used, the stability of the resulting complexes varied in the order Tl> K> Rb> Cs+. The enthalpy and entropy changes of the complexation reactions were evaluated from the temperature dependence of formation constants. It was found that the stability of the resulting complexes increased with increasing nitromethane in the solvent mixture. The TΔS° vs. ΔH° plot of all thermodynamic data obtained shows a fairly good linear correlation indicating the existence of enthalpy–entropy compensation in the complexation reactions.


conductance dibenzo-24-crown-8 enthalpy–entropy compensation K+, Rb+, Cs+ and Tl+ complexes mixed solvent stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pedersen C.J. (1967) J. Am. Chem. Soc. 89:7017CrossRefGoogle Scholar
  2. 2.
    Schwind R.M., Gilligan T.J., Cussler E.L. (1978) Synthetic Multidentate Macrocyclic Compounds. Academic Press, New YorkGoogle Scholar
  3. 3.
    Cooper S.R. (ed.) (1992) Crown Compounds; Toward Future Applications, VCH Publishers, New YorkGoogle Scholar
  4. 4.
    Lindoy L.F. (2004) J. Iran. Chem. Soc. 1:1Google Scholar
  5. 5.
    Gloe K. (ed.) (2005) Macrocyclic Chemistry. Current Trends and Future Perspectives, Springer, Dordrecht Google Scholar
  6. 6.
    Yu.A. Ovchinnikov, V.T. Ivanov, and A.M. Shkrob: Membrane-active Complexones, Elsevier, Amsterdam (1974)Google Scholar
  7. 7.
    Rubinson K.A. (1977) J. Chem. Educ. 54:345Google Scholar
  8. 8.
    Izatt R.M., Clark G.A., Bradshaw J.S., Lamb J.D., Christensen J.J. (1986) Sep. Purif. Methods 15: 21CrossRefGoogle Scholar
  9. 9.
    Shih J.-S. (1992) J. Chin. Chem. Soc. 39:551Google Scholar
  10. 10.
    Buhlmann P., Pretsch E., Bakker E. (1998) Chem. Rev. 98:1593CrossRefGoogle Scholar
  11. 11.
    Izatt R.M., Bradshaw J.S., Nielsen S.A., Lamb J.D., Christensen J.J., Sen D. (1985) Chem. Rev. 85:271CrossRefGoogle Scholar
  12. 12.
    Izatt R.M., Pawlak K., Bradshaw J.S., Bruening R.L. (1991) Chem. Rev. 91:1721 CrossRefGoogle Scholar
  13. 13.
    Izatt R.M., Pawlak K, Bradshaw J.S., Bruening R.L. (1995) Chem. Rev. 95:2529CrossRefGoogle Scholar
  14. 14.
    Bush M.A., Truter M.R. (1972) J. Chem. Soc., Perkin Trans. 2: 345Google Scholar
  15. 15.
    Hasek J., Huml K., Hlavata D. (1975) Acta Crystallogr. 35B:330 Google Scholar
  16. 16.
    Shamsipur M., Popov A.I. (1979) J. Am. Chem. Soc. 101:4051CrossRefGoogle Scholar
  17. 17.
    Bisnaire M., Detellier C., Nadon D. (1982) Can. J. Chem. 60:307CrossRefGoogle Scholar
  18. 18.
    Shamsipur M., Popov A.I. (1988) J. Phys. Chem. 92:147CrossRefGoogle Scholar
  19. 19.
    Farhadi K., Shamsipur M. (1999) J. Chin. Chem. Soc. 46:893 Google Scholar
  20. 20.
    M. Mercer and M.R. Truter: J. Chem. Soc., Dalton Trans. 2469 (1973)Google Scholar
  21. 21.
    D.L. Hughes: J. Chem. Soc., Dalton Trans. 2347 (1975)Google Scholar
  22. 22.
    J. Owen and M.R. Truter: J. Chem. Soc., Dalton Trans. 1831 (1979)Google Scholar
  23. 23.
    Gutmann V. (1978) The Donor–Acceptor Approach to Molecular Interactions, Plenum, New YorkGoogle Scholar
  24. 24.
    Wu Y.C., Koch W.F. (1991) J. Solution Chem. 20:391CrossRefGoogle Scholar
  25. 25.
    Takeda Y. (1983) Bull. Chem. Soc. Jpn. 56: 3600CrossRefGoogle Scholar
  26. 26.
    Zollinger D.P., Bulten F., Christenhuse A., Bos M., Van Der Linden W.E. (1987) Anal. Chim. Acta 198:207CrossRefGoogle Scholar
  27. 27.
    Nicely V.A., Dye J.L. (1971) J. Chem. Educ. 48:443CrossRefGoogle Scholar
  28. 28.
    Ganjali M.R., Rouhollahi A., Mardan A., Shamsipur M. (1998) J. Chem. Soc. Faraday Trans. 94:1959CrossRefGoogle Scholar
  29. 29.
    Shamsipur M., Saeidi M. (2000) J. Solution Chem. 29:1187CrossRefGoogle Scholar
  30. 30.
    Hofanova A., Koryta J., Brezina M., Mittal M.L. (1978) Inorg. Chim. Acta 28:73CrossRefGoogle Scholar
  31. 31.
    Shamsipur M., Rounaghi G., Popov A.I. (1980) J. Solution Chem. 9:701CrossRefGoogle Scholar
  32. 32.
    Jabbari A., Shamsipur M. (1993) Spectrosc. Lett. 26:1715Google Scholar
  33. 33.
    Rouhollahi A., Ganjali M.R., Shamsipur M. (1997) Iran. J. Chem. Chem. Eng. 16:59Google Scholar
  34. 34.
    Katsuto S., Ito Y., Takeda Y. (2004) Inorg. Chim. Acta 357:541CrossRefGoogle Scholar
  35. 35.
    Frensdorff H.K. (1977) J. Am. Chem. Soc. 93:600CrossRefGoogle Scholar
  36. 36.
    Pearson R.G. (1963) J. Am. Chem. Soc. 85:3233Google Scholar
  37. 37.
    Kane F.J., Ruben J. (1970) J. Am. Chem. Soc. 92:220CrossRefGoogle Scholar
  38. 38.
    Britten J.S., Blank M. (1968) Biochem. Biophys. Acta 159:160Google Scholar
  39. 39.
    Kane F.J. (1971) Arch. Biochem. Biophys. 143:232CrossRefGoogle Scholar
  40. 40.
    Inoue Y., Amano F, Okada N., Inada H., Ouchi M., Tai A., Hakushi T. (1990) J. Chem. Soc., Perkin Trans. 2:1239Google Scholar
  41. 41.
    Inou Y., Hakashi T., Liu Y., Tong L.H., Tin S. (1993) J. Am. Chem. Soc. 115:425Google Scholar
  42. 42.
    Graunwald E., Steel C. (1995) J. Am. Chem. Soc. 117:5687CrossRefGoogle Scholar
  43. 43.
    Shannon R.D. (1976) Acta Crystallogr. 32A:751Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Mehdi Taghdiri
    • 1
  • Mohammad Kazem Rofouei
    • 1
  • Mojtaba Shamsipur
    • 2
  1. 1.Department of ChemistryTarbiat Moallem UniversityTehranIran
  2. 2.Department of ChemistryRazi UniversityKermanshahIran

Personalised recommendations