Ligand Exchange Processes on Solvated Lithium Cations. II. Complexation by Cryptands in γ-Butyrolactone as Solvent

  • Ewa Pasgreta
  • Ralph Puchta
  • Michael Galle
  • Nico van Eikema Hommes
  • Achim Zahl
  • Rudi van Eldik
Article

Abstract

Kinetic studies on Li+ exchange between the cryptands C222 and C221, and γ-butyrolactone as solvent were performed as a function of ligand-to-metal ratio, temperature and pressure using 7Li NMR. The thermal rate and activation parameters are: C222: k 298 = (3.3 ± 0.8)×104 M−1 s−1, ΔH # = 35 ± 1 kJ mol−1 and ΔS # = −41 ± 3 J K−1 mol−1; C221: k 298 = 105 ± 32 M−1 s−1, ΔH # = 48 ± 1 kJ mol−1 and ΔS # = −45 ± 2 J K−1 mol−1. Temperature and pressure dependence measurements were performed in the presence of an excess of Li+. The influence of pressure on the exchange rate is insignificant for both ligands, such that the value of activation volume is around zero within the experimental error limits. The activation parameters obtained in this study indicate that the exchange of Li+ between solvated and chelated Li+ ions follows an associative interchange mechanism.

Keywords

γ-butyrolactone cryptands exchange mechanism Lithium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the EC TMR network HPRN-CT-2000-19 (“Solvation Dynamics and Ionic Mobility in Conventional and Polymer Solvents”) and the Deutsche Forschungsgemeinschaft (SFB 583 on Redox-active Metal Complexes). We would like to thank Dr. Lothar Helm (EPFL Lausanne) for introducing E.P to NMRICMA 2.7, Prof. Walter Bauer for helpful discussions, Prof. Tim Clark for hosting this work in the CCC and the Regionales Rechenzentrum Erlangen (RRZE) for a generous allotment of computer time.

Supplementary material

References

  1. 1.
    Dietrich B., Lehn J.M., Sauvage J.P. (1969) Tetrahedron Lett. 34: 2889CrossRefGoogle Scholar
  2. 2.
    Dietrich B., Lehn J.M., Sauvage J.P. (1969) Tetrahedron Lett. 34: 2885CrossRefGoogle Scholar
  3. 3.
    Lehn J.M. (1978) Acc. Chem. Res. 11: 49CrossRefGoogle Scholar
  4. 4.
    Lehn J.M. (1988) Angew. Chem. 100: 91Google Scholar
  5. 5.
    Wipff G., Wurtz J.M. (1989) New J. Chem. 13: 807Google Scholar
  6. 6.
    Zhang X.X., Izatt R.M., Krakowiak K.E., Bradshaw J.S. (1997) Inorg. Chim. Acta 254: 43CrossRefGoogle Scholar
  7. 7.
    Lehn J.M., Montavon F. (1976) Helv. Chim. Acta 59: 1566CrossRefGoogle Scholar
  8. 8.
    Puchta R., Seitz V., van Eikema Hommes N.J.R., Saalfrank R.W. (2000) J. Mol. Model. 6: 126CrossRefGoogle Scholar
  9. 9.
    Saalfrank R.W., Dresel A., Seitz V., Trummer S., Hampel F., Teichert M., Stalke D., Stadler C., Daub J., Schunemann V., Trautwein A.X. (1997) Chem. Eur. J. 3: 2058Google Scholar
  10. 10.
    Saalfrank R.W., Seitz V., Caulder D.L., Raymond K.N., Teichert M., Stalke D. (1998) Eur. J. Inorg. Chem. 9: 1313CrossRefGoogle Scholar
  11. 11.
    Saalfrank R.W., Seitz V., Heinemann F.W., Gobel C., Herbst-Irmer R. (2001) J. Chem. Soc., Dalton Trans. 5: 599CrossRefGoogle Scholar
  12. 12.
    Dietrich B., Kintzinger J.P., Lehn J.M., Metz B., Zahidi A. (1987) J. Phys. Chem. 91: 6600CrossRefGoogle Scholar
  13. 13.
    Lindoy L.F. (1992) The Chemistry of Macrocyclic Ligand Complexes. Cambridge University Press, Cambridge p 269Google Scholar
  14. 14.
    Farahbakhsh M., Schmidt H., Rehder D. (1997) Chem. Ber. Recl. 130: 1123Google Scholar
  15. 15.
    C.E. Housecroft: Cluster Compounds of Main Group Elements (1996), p. 94Google Scholar
  16. 16.
    Kirch M., Lehn J.M. (1975) Angew. Chem. 87: 542Google Scholar
  17. 17.
    Lehn J.M., Montavon F. (1978) Helv. Chim. Acta 61: 67CrossRefGoogle Scholar
  18. 18.
    Lehn J.M., Sauvage J.P. (1971) J. Chem. Soc., Chem. Commun. 9: 440Google Scholar
  19. 19.
    Morf W.E., Simon W. (1971) Helv. Chim. Acta 54: 2683CrossRefGoogle Scholar
  20. 20.
    Pregel M.J., Buncel E. (1993) J. Am. Chem. Soc. 115: 10CrossRefGoogle Scholar
  21. 21.
    Simon W., Morf W.E., Meier P.C. (1973) Struct. Bond. 16: 113CrossRefGoogle Scholar
  22. 22.
    Severin K. (2003) Coord. Chem. Rev. 245: 3CrossRefGoogle Scholar
  23. 23.
    Huang R.H., Wagner M.J., Gilbert D.J., Reidy-Cedergren K.A., Ward D.L., Faber M.K., Dye J.L. (1997) J. Am. Chem. Soc. 119: 3765CrossRefGoogle Scholar
  24. 24.
    Lehn J.M., Sauvage J.P. (1975) J. Am. Chem. Soc. 97: 6700CrossRefGoogle Scholar
  25. 25.
    Wipff G., Kollman P. (1985) Nouv J Chim 9: 457Google Scholar
  26. 26.
    Shamsipur M., Karkhaneei E., Afkhami A. (1998) Polyhedron 17: 3809CrossRefGoogle Scholar
  27. 27.
    Chen Q., Cannell K., Nicoll J., Dearden D.V. (1996) J. Am. Chem. Soc. 118: 6335CrossRefGoogle Scholar
  28. 28.
    Chantooni M.K. Jr., Kolthoff I.M. (1985) J. Solution Chem. 14: 1CrossRefGoogle Scholar
  29. 29.
    Cox B.G., Garcia-Rosas J., Schneider H. (1981) J. Am. Chem. Soc. 103: 1054CrossRefGoogle Scholar
  30. 30.
    Rhinebarger R.R., Popov A.I. (1988) Polyhedron 7: 1341CrossRefGoogle Scholar
  31. 31.
    M. Shamsipur and A.I. Popov: J. Phys. Chem. 90, 5997 (1986) and the references thereinGoogle Scholar
  32. 32.
    Smetana A.J., Popov A.I. (1980) J. Solution Chem. 9: 183CrossRefGoogle Scholar
  33. 33.
    Abou-Hamdan A., Lincoln S.F. (1991) Inorg. Chem. 30: 462CrossRefGoogle Scholar
  34. 34.
    Clarke P., Gulbis J.M., Lincoln S.F., Tiekink E.R.T. (1992) Inorg. Chem. 31: 3398CrossRefGoogle Scholar
  35. 35.
    Clarke P., Lincoln S.F., Tiekink E.R.T. (1991) Inorg. Chem. 30: 2747CrossRefGoogle Scholar
  36. 36.
    Lincoln S.F., Abou-Hamdan A. (1990) Inorg. Chem. 29: 3584CrossRefGoogle Scholar
  37. 37.
    Lincoln S.F., Rodopoulos T. (1991) Inorg. Chim. Acta 190: 223CrossRefGoogle Scholar
  38. 38.
    Lincoln S.F., Rodopoulos T. (1993) Inorg. Chim. Acta 205: 23CrossRefGoogle Scholar
  39. 39.
    Lincoln S.F., Stephens A.K.W. (1991) Inorg. Chem. 30: 3529CrossRefGoogle Scholar
  40. 40.
    Stephens A.K.W., Dhillon R.S., Madbak S.E., Whitbread S.L., Lincoln S.F. (1996) Inorg. Chem. 35: 2019CrossRefGoogle Scholar
  41. 41.
    Izatt R.M., Pawlak K., Bradshaw J.S., Bruening R.L. (1991) Chem. Rev. 91: 1721CrossRefGoogle Scholar
  42. 42.
    Shchori E., Jagur-Grodzinski J., Shporer M. (1973) J. Am. Chem. Soc. 95: 3842CrossRefGoogle Scholar
  43. 43.
    Strasser B.O., Hallenga K., Popov A.I. (1985) J. Am. Chem. Soc. 107: 789CrossRefGoogle Scholar
  44. 44.
    Strasser B.O., Popov A.I. (1985) J. Am. Chem. Soc. 107: 7921CrossRefGoogle Scholar
  45. 45.
    Izatt R.M., Bradshaw J.S., Nielsen S.A., Lamb J.D., Christensen J.J., Sen D. (1985) Chem. Rev. 85: 271CrossRefGoogle Scholar
  46. 46.
    Izatt R.M., Bradshaw J.S., Pawlak K., Bruening R.L., Tarbet B.J. (1992) Chem. Rev. 92: 1261CrossRefGoogle Scholar
  47. 47.
    Izatt R.M., Pawlak K., Bradshaw J.S., Bruening R.L. (1995) Chem. Rev. 95: 2529CrossRefGoogle Scholar
  48. 48.
    Sonoda K., Deguchi M., Koshina H., Armand M., Michot C., Gauthier M. (2003) Proc. Electrochem. Soc. 2002–2026: 512Google Scholar
  49. 49.
    Takami N., Sekino M., Ohsaki T., Kanda M., Yamamoto M. (2001) J. Power Sources 97–98: 677CrossRefGoogle Scholar
  50. 50.
    Hoffmann H.M.R., Rabe J. (1985) Angew. Chem. 97: 96Google Scholar
  51. 51.
    Mandal S.K., Amin S.R., Crowe W.E. (2001) J. Am. Chem. Soc. 123: 6457CrossRefGoogle Scholar
  52. 52.
    Zhu Y.-L., Xiang H.-W., Wu G.-S., Bai L., Li Y.-W. (2002) Chem. Commun. 3: 254CrossRefGoogle Scholar
  53. 53.
    Masia M., Rey R. (2004) J. Phys. Chem. B 108: 17992CrossRefGoogle Scholar
  54. 54.
    Zahl A., Neubrand A., Aygen S., van Eldik R. (1994) Rev. Sci. Instrum. 65: 882CrossRefGoogle Scholar
  55. 55.
    L. Helm and A. Borel: NMRICMA 2.7, University of Lausanne (2000)Google Scholar
  56. 56.
    Matlab: version 5.3.1., Mathworks Inc., (1999)Google Scholar
  57. 57.
    J.A. Pople, W.G. Schneider, and H.J. Bernstein: High-Resolution Nuclear Magnetic Resonance. McGrow-Hill Book Company, Inc., (1959), p. 513Google Scholar
  58. 58.
    Becke A.D. (1993) J. Chem. Phys. 98: 5648CrossRefGoogle Scholar
  59. 59.
    Lee C., Yang W., Parr R.G. (1988) Phys. Rev. B., Condens. Matter Mater. Phys. 37: 785Google Scholar
  60. 60.
    Stephens P.J., Devlin F.J., Chabalowski C.F., Frisch M.J. (1994) J. Phys. Chem. 98: 11623CrossRefGoogle Scholar
  61. 61.
    Dunning T.H. Jr., Hay P.J. (1976) Modern Theoretical Chemistry. Plenum, New York p. 1Google Scholar
  62. 62.
    Huzinaga S., Andzelm J., Klobukowski M., Radzio-Andzelm E., Sakai Y., Tatewaki H. (1984) Gaussian Basis Sets for Molecular Calculations. Elsevier, AmsterdamGoogle Scholar
  63. 63.
    The performance of the computational level employed in this study is well documented, see for example: P. Illner, A. Zahl, R. Puchta, N. van Eikema Hommes, P. Wasserscheid, and R. van Eldik: J. Organomet. Chem. 690, 3567 (2005); S. Klaus, H. Neumann, H. Jiao, A. Jacobi von Wangelin, D. Goerdes, D. Struebing, S. Huebner, M. Hateley, C. Weckbecker, K. Huthmacher, T. Riermeier, and M. Beller: J. Organomet. Chem. 689, 3685 (2004); R.W. Saalfrank, C. Deutscher, H. Maid, A.M. Ako, S. Sperner, T. Nakajima, W. Bauer, F. Hampel, B.A. Hess, N.J.R. van Eikema Hommes, R. Puchta, and F.W. Heinemann: Chem. Eur. J. 10, 1899 (2004); A. Scheurer, H. Maid, F. Hampel, R.W. Saalfrank, L. Toupet, P. Mosset, R. Puchta, and N.J.R. van Eikema Hommes: Eur. J. Org. Chem. 12, 2566 (2005); C.F. Weber, R. Puchta, N.J.R. van Eikema Hommes, P. Wasserscheid, and R. van Eldik: Angew. Chem. 117, 6187 (2005); C.F. Weber, R. Puchta, N.J.R. van Eikema Hommes, P. Wasserscheid, and R. van Eldik: Angew. Chem. (Int. ed. Eng.) 44, 6033 (2005)Google Scholar
  64. 64.
    M. J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A. Pople: Gaussian 03, Revision B.03, Gaussian Inc., Wallingford, CT (2004)Google Scholar
  65. 65.
    Shchori E., Jagur-Grodzinski J., Luz Z., Shporer M. (1971) J. Am. Chem. Soc. 93: 7133CrossRefGoogle Scholar
  66. 66.
    Song J.Y., Wang Y.Y., Wan C.C. (1999) J. Power Sources 77: 183CrossRefGoogle Scholar
  67. 67.
    Matsuda Y., Fukushima T., Hashimoto H., Arakawa R. (2002) J. Electrochem. Soc. 149: A1045CrossRefGoogle Scholar
  68. 68.
    Adebahr J., Forsyth M., MacFarlane D.R., Gavelin P., Jacobsson P. (2003) J. Mater. Chem. 13: 814CrossRefGoogle Scholar
  69. 69.
    Ding M.S., Xu K., Zheng J.P., Jow T.R. (2004) J. Power Sources 138: 340CrossRefGoogle Scholar
  70. 70.
    Ue M. (1994) J. Electrochem. Soc. 141: 3336CrossRefGoogle Scholar
  71. 71.
    Marcus Y. (1993) Chem. Soc. Rev. 22: 409CrossRefGoogle Scholar
  72. 72.
    Shamsipur M., Karkhaneei E., Afkhami A. (1998) J. Coord. Chem. 44: 23Google Scholar
  73. 73.
    Davis A.V., Fiedler D., Seeber G., Zahl A., Van Eldik R., Raymond K.N. (2006) J. Am. Chem. Soc. 128: 1324CrossRefGoogle Scholar
  74. 74.
    R. van Eldik and C.D. Hubbard: Chemistry at Extreme Conditions, Elsevier, Amsterdam (2005), pp. 109Google Scholar
  75. 75.
    Wolak M., van Eldik R. (2005) J. Am. Chem. Soc. 127: 13312CrossRefGoogle Scholar
  76. 76.
    Zahl A., Van Eldik R., Matsumoto M., Swaddle T.W. (2003) Inorg. Chem. 42: 3718CrossRefGoogle Scholar
  77. 77.
    Helm L., Merbach A.E. (2005) Chem. Rev. 105: 1923CrossRefGoogle Scholar
  78. 78.
    Galle M., Puchta R., van Eikema Hommes N.J.R., van Eldik R. (2006) Z. Phys. Chem. 220: 511Google Scholar
  79. 79.
    Choua S., Sidorenkova H., Berclaz T., Geoffroy M., Rosa P., Mezailles N., Ricard L., Mathey F., Le Floch P. (2000) J. Am. Chem. Soc. 122: 12227CrossRefGoogle Scholar
  80. 80.
    Moras D., Weiss R. (1973) Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 29: 400CrossRefGoogle Scholar
  81. 81.
    Meske W., Babel D. (1998) Z. Anorg. Allg. Chem. 624: 1751CrossRefGoogle Scholar
  82. 82.
    Scotti N., Zachwieja U., Jacobs H. (1997) Z. Anorg. Allg. Chem. 623: 1503CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Ewa Pasgreta
    • 1
  • Ralph Puchta
    • 1
    • 2
  • Michael Galle
    • 1
    • 2
  • Nico van Eikema Hommes
    • 2
  • Achim Zahl
    • 1
  • Rudi van Eldik
    • 1
  1. 1.Institute for Inorganic ChemistryUniversity of Erlangen-NürnbergErlangenGermany
  2. 2.Computer Chemistry CenterUniversity of Erlangen-NürnbergErlangenGermany

Personalised recommendations