Synthesis of Chiral Resorcinarene-based Hosts and a Mass Spectrometric Study of their Chemistry in Solution and the Gas Phase

  • Ngong K. Beyeh
  • Domonkos Fehér
  • Minna Luostarinen
  • Christoph A. SchalleyEmail author
  • Kari RissanenEmail author


The syntheses and characterization of new chiral tetrabenzoxazine and tetrakis-(dialkylaminomethyl) resorcinarenes can be achieved through the reaction of resorcinarene with chiral amines and formaldehyde. In order to examine their host–guest chemistry, chiral quaternary ammonium guests were synthesized by methylation of different amines and amino acid methyl esters through a reductive methylation followed by addition of methyl iodide. Subsequent anion exchange of the iodide against tetraphenylborate helps to improve solubility of the salts in organic solvents. After characterization in solution, mass spectrometry is used to examine the resorcinarenes’ chemistry in the gas phase. Interesting implications of the fragmentation behavior for their solution phase chemistry arise, for which a first example is presented. Ammonium ion binding is indicated by mass spectrometry. Nevertheless, chiral recognition between the chiral hosts and pseudoracemic 1:1 mixtures of appropriately deuterium-labeled chiral guest cations is however not observed.


Electrospray Mass Spectrometry gas-phase chemistry resorcinarenes host–guest chemistry chirality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank the Deutsche Forschungsgemeinschaft (DFG) and the Fonds der Chemischen Industrie (FCI) for financial support. C.A.S. is grateful for support with a Heisenberg fellowship from the DFG and a Dozentenstipendium from the FCI. N.K.B. wishes to thank the Graduate School of Bioorganic and Medicinal Chemistry for financial support. K.R. kindly acknowledges the funding from Academy of Finland (AF) and TEKES. The Deutscher Akademischer Austauschdienst (DAAD) and the AF are thanked for support for travel grants.


  1. 1.
    Tunstad M., Tucker A., Dalcanale E., Weiser J., Bryant A., Sherman C., Helgeson C., Knobler B., Cram J. (1989). J. Org. Chem. 54, 1305CrossRefGoogle Scholar
  2. 2.
    Timmerman P., Verboom W., Reinhoudt D.N. (1996). Tetrahedron 52, 2663CrossRefGoogle Scholar
  3. 3.
    Steed J.W., Atwood J.L. (2000). Supramolecular Chemistry. Wiley, Chichester. Google Scholar
  4. 4.
    Shivanyuk A., Saadioui M., Broda F., Thondorf I., Vysotsky M.O., Rissanen K., Kolehmainen E., Böhmer V. (2004). Chem. Eur. J. 10, 2138CrossRefGoogle Scholar
  5. 5.
    D. Cram, S. Karbach, E. Kim, B. Knobler, F. Maverick, L.␣Ericson, and C. Helgeson: J. Am. Chem. Soc. 110, 2229 (1988)Google Scholar
  6. 6.
    (a) K. Murayama and K. Aoki, Chem. Commun. 607–608 (1998); (b) K.N. Rose, L.J. Barbour, G.W. Orr, and J. Atwood: Chem. Commun. 407–408 (1998); (c) A. Shivanyuk, K. Rissanen, and E.␣Kolehmainen: Chem. Commun. 1107–1108 (2000); (d) A. Shivanyuk and J. Rebek, Jr.: Chem. Commun. 2374–2375 (2001); (e) H. Mansikkamäki, M. Nissinen, C.A. Schalley, and K. Rissanen: New. J. Chem. 27, 88 (2003); (f) H. Mansikkamäki, M. Nissinen, and K. Rissanen: Chem. Commun. 1902–1903 (2002)Google Scholar
  7. 7.
    (a) L.R. MacGillvray and J.L. Atwood: Nature 389, 469 (1997); (b) A. Shivanyuk and J. Rebek, Jr.: Chem. Commun. 2424 (2001); (c) A. Shivanyuk and J. Rebek, Jr.: Proc. Natl. Acad. Sci. USA 98, 7662 (2001); (d) L. Avram and Y. Cohen: Org. Lett. 4, 4365 (2002); (e) L. Avram and Y. Cohen: J. Am. Chem. Soc. 124, 15148 (2002); (f) A. Shivanyuk and J. Rebek, Jr.: J. Am. Chem. Soc. 124, 12074 (2002); (g) A. Schivanyuk and J. Rebek, Jr.: J. Am. Chem. Soc. 125, 3432 (2003); (h) T. Gerkensmeier, W. Iwanek, C. Agena, R.␣Fröhlich, S. Kotila, C. Näther, and J. Mattay: Eur. J. Org. Chem. 2257 (1999)Google Scholar
  8. 8.
    H. Mansikkamaki, M. Nissinen, and K. Rissanen: Angew. Chem. 116, 1263 (2004); Angew. Chem. Int. Ed. 43, 1243 (2004)Google Scholar
  9. 9.
    Luostarinen M., Shivanyuk A., Rissanen K. (2001). Org. Lett. 26, 4141CrossRefGoogle Scholar
  10. 10.
    Schivanyuk A., Schmidt C., Böhmer V., Paulus E., Lukin O., Vogt W. (1998). J. Am. Chem. Soc. 120, 4319CrossRefGoogle Scholar
  11. 11.
    Schmidt C., Paulus E., Böhmer V., Vogt W. (2001) New J. Chem. 25, 374CrossRefGoogle Scholar
  12. 12.
    White C., Burnett J. (2005) J. Chromatogr. A 1074, 175CrossRefGoogle Scholar
  13. 13.
    (a) H.J. Schneider, D. Güttes, and U. Schneider: Angew. Chem. 98, 635 (1986); Angew. Chem. Int. Ed. 25, 647 (1986); (b) H.J. Schneider: Angew. Chem. 103, 1419 (1991); Angew. Chem. Int. Ed. 30, 1417 (1991); (c) J.L. Atwood and A. Szumna: J. Am. Chem. Soc. 124, 10646 (2002)Google Scholar
  14. 14.
    Mansikkamäki H., Nissinen M., Rissanen K. (2005) Cryst. Eng. Comm. 7, 519Google Scholar
  15. 15.
    Mansikkamäki H., Schalley C.A., Nissinen M., Rissanen K. (2005) New J. Chem. 29, 116CrossRefGoogle Scholar
  16. 16.
    For more recent reviews, see: (a) M. Przybylski and M.O. Glocker: Angew. Chem. 108, 878 (1996); Angew. Chem. Int. Ed. 35, 806 (1996); (b) J.S. Brodbelt: Int. J. Mass Spectrom. 200, 57 (2000); (c) C.A. Schalley: Int. J. Mass Spectrom. 194, 11 (2000); (d) C.B. Lebrilla: Acc. Chem. Res. 34, 653 (2001); (e) C.A. Schalley: Mass Spectrom. Rev. 20, 253 (2001)Google Scholar
  17. 17.
    Sawada M. Mass Spectrom. Rev. (1997) 16, 73CrossRefGoogle Scholar
  18. 18.
    (a) C. Garcia, J. Guyot, G. Jeminet, E. Leize-Wagner, H.␣Nierengarten, and A. Van Dorsselaer: Tetrahedron Lett. 40, 4997 (1999); (b) H. Nierengarten, E. Leize, C. Garcia, G. Jeminet, and A. Van Dorsselaer: Analysis 28, 259 (2000)Google Scholar
  19. 19.
    (a) C.A. Schalley, R.K. Castellano, M.S. Brody, D.M. Rudkevich, G. Siuzdak, and J. Rebek, Jr.: J. Am. Chem Soc. 121, 4568 (1999); (b) M.S. Brody, D.M. Rudkevich, C.A. Schalley, and J. Rebek, Jr.: Angew. Chem. 111, 1738 (1999); Angew. Chem. Int. Ed. 38, 1640 (1999); (c) A. Lützen, A.R. Renslo, C.A. Schalley, B.M. O'Leary, and J. Rebek, Jr.: J. Am. Chem. Soc. 121, 7455 (1999); (d)␣B.M. O'Leary, T. Szabo, N. Svenstrup, C.A. Schalley, A.␣Lützen, J. Rebek, Jr.: J. Am. Chem. Soc. 123, 11519 (2001); (e) M.␣Makinen, P. Vainiotalo, and K. Rissanen: J. Am. Soc. Mass. Spectrom. 13, 851 (2002); (f) A. Tafi, B. Botta, M. Botta, G.D. Monache, A. Filippi, and M. Speranza: Chem. Eur. J. 10, 4126 (2004)Google Scholar
  20. 20.
    Sawada M., Takai Y., Hamada H., Hirayama S., Kaneda T., Tankaka T., Kamada K., Mizooku T., Takeuchi S., Ueno K., Hirose K., Tobe Y., Naemura K. (1995) J. Am. Chem. Soc. 117, 7726CrossRefGoogle Scholar
  21. 21.
    Mehdizadeh A., Letzel M.C., Klaes M., Agena C., Mattay J. (2004) Eur. J. Mass Spectrom. 10, 649CrossRefGoogle Scholar
  22. 22.
    Gacek M., Undheim K. (1973) Tetrahedron 29, 863CrossRefGoogle Scholar
  23. 23.
    Spartan 04, Wavefunction Inc., 18401 Von Karman Ave, Irvine/CA, USAGoogle Scholar
  24. 24.
    The Program Chemical Kinetics Simulator 1.01 is available online from W. D. Hinsberg, F. A. Houle: (August 2004)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Nanoscience Center, Department of ChemistryUniversity of JyväskyläJyväskyläFinland
  2. 2.Institut für Chemie und Biochemie – Organische ChemieFreie Universität BerlinBerlinGermany
  3. 3.Department of ChemistryUniversity of Hawai’i at ManoaHonoluluUSA

Personalised recommendations