Unexpected Cyclization of Dipyridyl-glycoluril in the Presence of Formaldehyde and Strong Acid: A New Scaffold with a Potential as an Anion Receptor

  • Neslihan Saki
  • Burcak Icli
  • Orkun Cevheroglu
  • Engin U. AkkayaEmail author


In an attempted synthesis of peripherally pyridine-substituted cucurbituril, an unexpected cyclized product was obtained. A careful NMR analysis followed by mass spectrometry and preliminary crystallographic analyses, helped us in resolving the structure. The structure has two quaternized pyridine functionalities and a groove suitable as a potential receptor site. In addition, just like the parent glycoluril structure, two remaining urea-derived nitrogens can be alkylated by alkyl halides. Thus, we believe this high yielding reaction may become an entry point to a new class of anion receptors.


cucurbituril cucurbituril derivatives glycolurils molecular scaffolds 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We gratefully acknowledge support from Kocaeli University BAP Funds and METU University Research Funds.


  1. 1.
    Rebek J. Jr., (1996) Chem. Soc. Rev. 25: 255CrossRefGoogle Scholar
  2. 2.
    Rebek J. Jr.. (1999). Acc. Chem. Res. 32: 278CrossRefGoogle Scholar
  3. 3.
    Rowan A.E., Elemans J.A.A.W., Nolte R.J.M., (1998). Acc. Chem. Res. 32: 995CrossRefGoogle Scholar
  4. 4.
    Sun S., Britten J.F., Cow C.N., Matta C.F., Harrison P.H.M., (1998). Can. J. Chem. 76: 301CrossRefGoogle Scholar
  5. 5.
    Mock W.L., (1995). Top. Curr. Chem. 175: 1Google Scholar
  6. 6.
    Lee J.W., Samal S., Selvapalam N., Kim H.-J., Kim K., (2003). Acc. Chem. Res. 36: 621CrossRefGoogle Scholar
  7. 7.
    Lagona J., Mukhopadhyay P., Chakrabarti S., Isaacs L., (2005). Angew. Chem. Int. Ed. 44: 4844CrossRefGoogle Scholar
  8. 8.
    Kim K., Selvapalam N., Oh D.H., (2004). J. Incl. Phenom. Macro. Chem. 50: 31CrossRefGoogle Scholar
  9. 9.
    Mock W.L., Shih N.Y., (1983). J. Org. Chem. 48: 3619CrossRefGoogle Scholar
  10. 10.
    D. Tuncel and J.H.G. Steinke: Chem. Commun. 253 (2001)Google Scholar
  11. 11.
    Meschke C., Buschmann H.J., Schollmeyer E., (1999) Polymer 40: 945CrossRefGoogle Scholar
  12. 12.
    Park K.M., Whang D., Lee E., Heo J., Kim K., (2002) Chem. Eur. J. 8: 498CrossRefGoogle Scholar
  13. 13.
    W.L. Lock: in F. Vögtle (ed.), Comprehensive Supramolecular Chemistry, Vol. 2, Elsevier Press, New York (1996), p. 477Google Scholar
  14. 14.
    Flinn A., Hough G.C., Stoddart J.F., Williams D.J., (1992). Angew. Chem. 104: 1550CrossRefGoogle Scholar
  15. 15.
    Isobe H., Sato S., Nakamura E., (2002). Org. Lett. 4: 1287CrossRefGoogle Scholar
  16. 16.
    Zhao J., Kim H., Oh J., Kim S., Lee J.W., Sakamoto S., Yamaguchi K., Kim K., (2001). Angew. Chem. Int. Ed. 40: 4233CrossRefGoogle Scholar
  17. 17.
    Jon S.Y., Selvapalam N., Oh D.H., Kang J.K., Kim S.Y., Jeon Y.J., Lee J.W., Kim K., (2003). J. Am. Chem. Soc. 125: 10186CrossRefGoogle Scholar
  18. 18.
    Day A.I., Arnold A.P., Blanch R.J., (2003). Molecules 8: 74CrossRefGoogle Scholar
  19. 19.
    Zhao Y.J., Xue S.F., Zhu Q.J., Tao Z., Zhang J.X., Wei Z.B., Long L.S., Hu M.L., Xiao H.P., Day A.I., (2004). Chinese Sci. Bull. 49: 1111CrossRefGoogle Scholar
  20. 20.
    Freeman W.A., Mock W.L., Shih N.Y., (1981). J Am. Chem. Soc. 103: 7367CrossRefGoogle Scholar
  21. 21.
    Buschmann H.J., Cleve E., Jansen K., Wego A., Schollmeyer E., (2001). J. Incl. Phenom. Macro. Chem. 40: 117CrossRefGoogle Scholar
  22. 22.
    J.N.H. Reek, A. Kros, and R.J. Nolte: Chem. Commun. 245 (1996)Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Neslihan Saki
    • 1
  • Burcak Icli
    • 2
  • Orkun Cevheroglu
    • 2
  • Engin U. Akkaya
    • 2
    Email author
  1. 1.Department of ChemistryKocaeli UniversityIzmitTurkey
  2. 2.Department of ChemistryMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations