Characterization of Alkane Diol-CD Complexes. Acid Denitrosation of N-Methyl-N-Nitroso-p-Toluenesulphonamide as a Chemical Probe

  • Celia Cabaleiro-Lago
  • Luis García-Río
  • Pablo Hervés
  • Juan C. Mejuto
  • Jorge Pérez-Juste


A study was carried out on the acid denitrosation of N-methyl-N-nitroso-p-toluenesulfonamide (MNTS) in mixed systems made up of linear (geminal and terminal) alkyl diols and β-cyclodextrin (CD). The alkyl diols used allowed us to vary the length of the hydrocarbon chain from 2 to 6 carbon atoms. The observed rate constant, k obs, decreases in the presence of CD. The inhibition profile decreases as the as the number of carbons in the chain is increased. This behaviour can be interpreted as a consequence of a balance between the complexation processes of MNTS and the alkyl diols by the CD. At a constant CD concentration and increase in the diols concentration decreases the concentration of free cyclodextrin available to complex with MNTS molecules and therefore produces an increases in the observed rate constant. The results were interpreted in terms of two different models; trough the presupposition and non-presupposition of a stoichiometry for the CD-diols complex. Both models agreed quite well and allow us to determine the uncomplexed cyclodextrin concentration in each case as well as the stoichiometry of the complexes. The binding constant for both types of alkane diols increase with increasing the number of carbon in the chain. Besides, the binding constant of the α,ω-alkane diols is higher than for the analog α,β-alkane diols. One of the main consequences of this study is that the acid denitrosation of MNTS can be use to obtain the stochiometry of the CD-diol complexes and to monitor the free cyclodextrin concentration.


inclusion complexes stability constant uncomplexed cyclodextrin β-cyclodextrin 

Supplementary material

supp.doc (470 kb)
Supplementary material


  1. 1.
    M.L. Bender and M. Komiyama: Reactivity and Structure Concepts in Organic Chemistry (Cyclodextrin Chemistry), Springer-Verlag, (1978).Google Scholar
  2. 2.
    Clarke R.J., Coates J.H. and Lincoln S.F. (1988). Adv. Carbohydr. Chem. Biochem. 46: 205CrossRefGoogle Scholar
  3. 3.
    Connors K.A. (1997). Chem. Rev. 97: 1325CrossRefGoogle Scholar
  4. 4.
    Rekharsky M.V. and Inoue Y. (1998). Chem. Rev. 98: 1875CrossRefGoogle Scholar
  5. 5.
    Schneider H.-J., Hacket F., Ruediger V. and Ikeda H. (1998). Chem. Rev. 98: 1755CrossRefGoogle Scholar
  6. 6.
    J. Szejtle and L. Szente: In The Eight International Symposium on Cyclodextrins, 1996Google Scholar
  7. 7.
    J. Szejtli and T. Osa: In Cyclodextrins (Comprehensive Supramolecular Chemistry), Oxford, 1996Google Scholar
  8. 8.
    Andini S., Castronuovo G., Elia V. and Gallotta E. (1991). Carbohydr. Res. 217: 87CrossRefGoogle Scholar
  9. 9.
    Castronuovo G., Elia V., Niccoli M., Velleca F. and Viscardi G. (1998). Carbohydr. Res. 306: 147CrossRefGoogle Scholar
  10. 10.
    Vega-Rodriguez A., Pineiro A. and Perez-Casas S. (2003). Thermochim. Acta 405: 109CrossRefGoogle Scholar
  11. 11.
    Nishikawa S., Yokoo N. and Kuramoto N. (1998). J. Phys. Chem. B 102: 4830CrossRefGoogle Scholar
  12. 12.
    Rekharsky M.V., Mayhew M.P., Goldberg R.N., Ross P.D., Yamashoji Y. and Inoue Y. (1997). J. Phys. Chem. B 101: 87CrossRefGoogle Scholar
  13. 13.
    Tee O.S., Bozzi M., Clement N. and Gadosy T.A. (1995). J. Org. Chem. 60: 3509CrossRefGoogle Scholar
  14. 14.
    Tee O.S., Hussein S.M.I., Turner I.E. and Yazbeck O.J. (2000). Can. J. Chem. 78: 436CrossRefGoogle Scholar
  15. 15.
    Gadosy T.A., Boyd M.J. and Tee O.S. (2000). J. Org. Chem. 65: 6879CrossRefGoogle Scholar
  16. 16.
    Tee O.S., Gadosy T.A. and Giorgi J.B. (1997). Can. J. Chem. 75: 83CrossRefGoogle Scholar
  17. 17.
    Castronuovo G., Elia V., Fessas D., Giordano A. and Velleca F. (1995). Carbohydr. Res. 272: 31CrossRefGoogle Scholar
  18. 18.
    Ionita G., Ionita P., Sahini V.E. and Luca C. (2001). J. Inclusion Phenom. 39: 269CrossRefGoogle Scholar
  19. 19.
    Stoedeman M., Gomez-Orellana I. and Hallen D. (2003). J. Inclusion Phenom. 46: 125CrossRefGoogle Scholar
  20. 20.
    Iglesias E. (2003). J. Org. Chem. 68: 2689CrossRefGoogle Scholar
  21. 21.
    Iglesias E. (2004). Curr. Org. Chem. 8: 1CrossRefGoogle Scholar
  22. 22.
    Buschmann H.J., Cleve E. and Schollmeyer E. (1999). J. Inclusion Phenom. 33: 233CrossRefGoogle Scholar
  23. 23.
    Mwakibete H., Cristantino R., Bloor D.M., Wyn-Jones E. and Holzwarth J.F. (1995). Langmuir 11: 57CrossRefGoogle Scholar
  24. 24.
    Schmolzer S. and Hoffmann H. (2003). Colloids Surf. A 213: 157CrossRefGoogle Scholar
  25. 25.
    Garcia-Rio L., Leis J.R., Mejuto J.C. and Perez-Juste J. (1997). J. Phys. Chem. B 101: 7383CrossRefGoogle Scholar
  26. 26.
    Garcia-Rio L., Leis J.R., Mejuto J.C. and Perez-Juste J. (1998). J. Phys. Chem. B 102: 4581CrossRefGoogle Scholar
  27. 27.
    Alvarez A.R., Garcia-Rio L., Herves P., Leis J.R., Mejuto J.C. and Perez-Juste J. (1999). Langmuir 15: 8368CrossRefGoogle Scholar
  28. 28.
    Fernandez I., Garcia-Rio L., Herves P., Mejuto J.C., Perez-Juste J. and Rodriguez-Dafonte P. (2000). J. Phys. Org. Chem. 13: 664CrossRefGoogle Scholar
  29. 29.
    Dorrego A.B., Garcia-Rio L., Herves P., Leis J.R., Mejuto J.C. and Perez-Juste J. (2000). Angew. Chem., Int. Ed. Engl. 39: 2945CrossRefGoogle Scholar
  30. 30.
    Dorrego B., Garcia-Rio L., Herves P., Leis J.R., Mejuto J.C. and Perez-Juste J. (2001). J. Phys. Chem. B 105: 4912CrossRefGoogle Scholar
  31. 31.
    Garcia-Rio L., Leis J.R., Mejuto J.C., Navarro-Vazquez A., Perez-Juste J. and Rodriguez-Dafonte P. (2004). Langmuir 20: 606CrossRefGoogle Scholar
  32. 32.
    Hamai S. (1989). J. Am. Chem. Soc. 111: 3954CrossRefGoogle Scholar
  33. 33.
    Tee O.S., Bozzi M., Hoeven J.J. and Gadosy T.A. (1993). J. Am. Chem. Soc. 115: 8990CrossRefGoogle Scholar
  34. 34.
    Iglesias E. (1998). J. Am. Chem. Soc. 120: 13057CrossRefGoogle Scholar
  35. 35.
    Williams D.L.H. (1976). J. Chem. Soc., Perkin Trans. 2: 1838Google Scholar
  36. 36.
    Garcia-Rio L., Herves P., Leis J.R., Mejuto J.C. and Perez-Juste J. (1998). J. Phys. Org. Chem. 11: 584CrossRefGoogle Scholar
  37. 37.
    Herves P., Leis J.R., Mejuto J.C. and Perez-Juste J. (1997). Langmuir 13: 6633CrossRefGoogle Scholar
  38. 38.
    Castro A., Leis J.R. and Pena M.E. (1990). J. Chem. Soc. Perkin Trans. 2: 1221Google Scholar
  39. 39.
    Hashimoto S. and Thomas J.K. (1985). J. Am. Chem. Soc. 107: 4655CrossRefGoogle Scholar
  40. 40.
    Satake I., Ikenoue T., Takeshita T., Hayakawa K. and Maeda T. (1985). Bull. Chem. Soc. Jpn 58: 2746CrossRefGoogle Scholar
  41. 41.
    Satake I., Yoshida S., Hayakawa K., Maeda T. and Kusumoto Y. (1986). Bull. Chem. Soc. Jpn 59: 3991CrossRefGoogle Scholar
  42. 42.
    Matsui Y. and Mochida K. (1979). Bull. Chem. Soc. Jpn 52: 2808CrossRefGoogle Scholar
  43. 43.
    Castronuovo G., Elia V., Niccoli M. and Velleca F. (2003). J. Inclusion Phenom. 45: 91Google Scholar
  44. 44.
    Steiner T., Koellner G. and Saenger W. (1992). Carbohydr. Res. 228: 321CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Celia Cabaleiro-Lago
    • 1
  • Luis García-Río
    • 2
  • Pablo Hervés
    • 1
  • Juan C. Mejuto
    • 1
  • Jorge Pérez-Juste
    • 1
  1. 1.Departamento de Química Física Universidad de VigoVigoSpain
  2. 2.Departamento de Química Física Universidad de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations