Formation of Cyclodextrin Inclusion Complexes with Doxycyclin-Hyclate: NMR Investigation of Their Characterisation and Stability

  • Youssef Bakkour
  • Gaston Vermeersch
  • Michel Morcellet
  • FranÇois Boschin
  • Bernard Martel
  • Nathalie Azaroual


The solubility of cyclodextrin (CD) can be notably improved when it is included in a polymeric structure. CD was reacted with citric acid, yielding a water-soluble polymer whose inclusion properties towards doxycyclin-hyclate (DOX) as guest molecule were investigated by NMR. The new DOSY (Diffusion Ordered SpectroscopY) method, based on diffusion coefficient measurements is convenient study complexes made of large molecules and it was applied to determine the association constants between DOX and parent β and γ-CD and their polymerised forms. The association constant obtained by DOSY was compared with that determined more classically by the chemical shift variation measurement using Scott's plot.

Key words

association constant DOSY NMR doxycyclin-hyclate 1H NMR inclusion complex polymer cyclodextrin ROESY 2D 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Szejtli, J. 1998Chem. Rev981743CrossRefGoogle Scholar
  2. 2.
    Szejtli, J. 1988Cyclodextrin TechnologyKluwerDordrecht418Google Scholar
  3. 3.
    S.D. Eastburn and B.Y. Tao: Biotechnol. Adv., 325 (1994)Google Scholar
  4. 4.
    Bender, M.L., Komiyama, M. 1978Cyclodextrin ChemistrySpringer VerlagBerlinGoogle Scholar
  5. 5.
    Hirose, K. 2001J. Incl. Phenom39193Google Scholar
  6. 6.
    Fielding, L. 2000Tetrahedron566151CrossRefGoogle Scholar
  7. 7.
    B. Martel, M. Morcellet and M. Weltrowski. Patent PCT/FR00/00378, EP 1165621 (2000); US 6,660,804 B1 (2003). WO 00/047630Google Scholar
  8. 8.
    B. Martel, D Ruffin, M. Morcellet, M. Weltrowski and Y. Lekchiri, accepted in J. Appl. Polym. SciGoogle Scholar
  9. 9.
    Connors, K.A. 1987Binding ConstantsWileyNew YorkGoogle Scholar
  10. 10.
    Job, P. 1928Ann. Chim9113Google Scholar
  11. 11.
    Bratu, I., Gavira-Vallejo, J.M., Hernanz, A., Bogdan, M., Gh. Bora,  2004Biopolymers73451CrossRefGoogle Scholar
  12. 12.
    Zouvelekis, D., Yannakopoulou, K., Mavridis, I.M., Antoniadou-Vyza, E. 2002Carbohyd. Res3371387Google Scholar
  13. 13.
    Benesi, H.A., Hildebrand, J.H. 1949J. Am. Chem. Sec712703CrossRefGoogle Scholar
  14. 14.
    Scott, R. L. 1956Rec. Trav. Chim. Pays-Bas75787Google Scholar
  15. 15.
    Wu, D., Chen, A., Johnson, C.S. 1995J. Magn. Reson. A115260Google Scholar
  16. 16.
    Viel, S., Capitani, D., Mannina, L., Segre, A., Zouvelekis, D., Yannakopoulou, K., Mavridis, I.M., Antoniadou-Vyza, E. 2003Biomacromolecules41843CrossRefGoogle Scholar
  17. 17.
    Valentini, M., Vaccaro, A., Rehor, A., Napoli, A., Hubbell, J.A., Tirelli, N. 2004JACS1262143CrossRefGoogle Scholar
  18. 18.
    Leite, R.A., Lino, A.C.S., Takahata, Y. 2003J. Mol. Struct66449Google Scholar
  19. 19.
    Cameron, K.S., Fielding, L. 2002Magn. Reson. Chem40106CrossRefGoogle Scholar
  20. 20.
    Laverde, A., da Conceiçao, G., Queiroz, S.C.N., Cameron, F.K.S., Fielding, L. 2002Magn. Reson. Chem40106CrossRefGoogle Scholar
  21. 21.
    Wimmer, R., Aachmann, F.L., Larsen, K.L., Petersen, B. 2002Carbohyd. Res337841Google Scholar
  22. 22.
    Danielson, J., Jarvet, J., Damberg, P., Gräslund, A. 2004Biochemistry436261Google Scholar
  23. 23.
    Liu, Y., Li, L., Zhang, H.Y., Liang, P., Wang, H. 2003Carbohyd. Res3381751Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Youssef Bakkour
    • 1
  • Gaston Vermeersch
    • 1
  • Michel Morcellet
    • 2
  • FranÇois Boschin
    • 2
  • Bernard Martel
    • 2
  • Nathalie Azaroual
    • 1
  1. 1.Laboratoire de PhysiqueUMR CNRS 8009, Faculté des Sciences Pharmaceutiques et BiologiquesLilleFrance
  2. 2.Laboratoire de Chimie Organique et MacromoléculaireUMR CNRS 8009, Université des Sciences et Technologie de Lille 1Villeneuve d' AscqFrance

Personalised recommendations