Advertisement

Binding Delocalization in Polymer Inclusion Complexes of Ring Molecules: Pseudopolyrotaxanes of α-Cyclodextrin and Poly(ethylene glycol)

  • Jiří HorskýEmail author
  • Bedřich Porsch
Original Research Artical

Abstract

With polymer substrates, the continuous variation method based on monomer unit concentration underestimates the number of monomer units covered by a low-molecular-weight ligand. Accordingly, gel permeation chromatography confirms that an α-cyclodextrin (α-CD) molecule occupies more than previously claimed two ethylene glycol units in solid α-CD/poly(ethylene glycol) inclusion complexes. Consequently, the poly(ethylene glycol) chain cannot be modeled as an array of distinct binding sites corresponding to two monomer units and no preferred positions, i.e., no distinct binding sites probably exist on the chain for α-CD threading. The effect of such binding delocalization can be assessed using the theory of binding large ligands to a finite one-dimensional lattice [I.R. Epstein: Biophys. Chem. 8, 327 (1978)]. Binding delocalization slightly decreases the average occupancy with highly occupied chains but strongly promotes the occupancy in the case of weak binding. This may be an additional reason for observed high yields of precipitated CD/polymer complexes.

Keywords

binding delocalization binding isotherm continuous variation method cyclodextrins lattice model poly(ethylene glycol) polymer inclusion complexes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1.  1.
    Szejtli, J. 1998Chem. Rev.981743CrossRefPubMedGoogle Scholar
  2.  2.
    Harada, A., Kamachi, M. 1990Macromolecules232821CrossRefGoogle Scholar
  3.  3.
    Harada, A., Li, J., Kamachi, M. 1993Macromolecules265698CrossRefGoogle Scholar
  4.  4.
    Harada, A., Okada, M., Kawaguchi, Y., Kamachi, M. 1999Polym. Adv. Technol.103CrossRefGoogle Scholar
  5.  5.
    Ceccato, M., Lo Nostro, P., Baglioni, P. 1997Langmuir132436CrossRefGoogle Scholar
  6.  6.
    Lo Nostro, P., Lopes, J.R., Cardelli, C. 2001Langmuir174610CrossRefGoogle Scholar
  7.  7.
    Pozuelo, J., Mendicuti, F., Mattice, W.L. 1997Macromolecules303685CrossRefGoogle Scholar
  8.  8.
    Pozuelo, J., Mendicuti, F., Mattice, W.L. 1998Polym. J.30479CrossRefGoogle Scholar
  9.  9.
    Okumura, Y., Ito, K., Hayakawa, R. 1998Phys. Rev. Lett.805003CrossRefGoogle Scholar
  10. 10.
    Meier, L.P., Heule, M., Caseri, W.R., Shelden, R.A., Suter, U.W., Wenz, G., Keller, B. 1996Macromolecules29718CrossRefGoogle Scholar
  11. 11.
    Herrmann, W., Keller, B., Wenz, G. 1997Macromolecules304966CrossRefGoogle Scholar
  12. 12.
    Horský, J. 2000Macromol. Theory Simul.9759CrossRefGoogle Scholar
  13. 13.
    Harada, A. 1997Carbohydr. Polym.34183CrossRefGoogle Scholar
  14. 14.
    Huang, C.Y., Zhou, R.X., Yang, D.C.H., Chock, P.B. 2003Biophys. Chem.100143CrossRefPubMedGoogle Scholar
  15. 15.
    Epstein, I.R. 1978Biophys. Chem.8327CrossRefPubMedGoogle Scholar
  16. 16.
    Horský, J. 1998Eur. Polym J.34591CrossRefGoogle Scholar
  17. 17.
    Lou, X., Zhu, Q., Lei, Z., Dongen, J.L.J., Meijer, E.W. 2004J. Chromatogr. A.102967CrossRefPubMedGoogle Scholar
  18. 18.
    McGhee, J.D., Hippel, P.H. 1974J. Mol. Biol.86469CrossRefPubMedGoogle Scholar
  19. 19.
    Fujita, H., Ooya, T., Kurisawa, M., Mori, H., Terano, M., Yui, N. 1996Macromol. Rapid Commun.17509CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Institute of Macromolecular ChemistryAcademy of Sciences of the Czech RepublicPrague 6Czech Republic

Personalised recommendations