Design of Supramolecular Cyclodextrin Complex Sensors for Ion and Molecule Recognition in Water

  • Takashi Hayashita
  • Akiyo Yamauchi
  • Ai-Jun Tong
  • Jong Chan Lee
  • Bradley D. Smith
  • Norio Teramae
Mini Review


The design and function of novel supramolecular fluoroionophore/cyclodextrin (CyD) complex sensors for ion and molecule recognition in water are reviewed. For the crown ether fluoroionophore/γ-CyD complex, the dimerization of the fluoroionophore inside the γ-CyD is found to be selectively promoted by alkali metal ion binding, thereby resulting in metal-ion-selective pyrene dimer emission in water. This supramolecular function is successfully utilized in the design of a podand fluoroionophore/γ-CyD complex for sensing toxic lead ion in water. The boronic acid fluoroionophore/β-CyD complex binds sugars and produces increased fluorescence emission in water. The response mechanism appears to be due to the suppression of the photoinduced electron transfer (PET) from pyrene donor to trigonal phenylboronic acid acceptor. This is a novel emission function provided by the boronic acid fluoroionophore/β-CyD complex sensors in water.


alkali metal ion cyclodextrin fluoroionophore lead ion sugar supramolecular sensor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lehn, J.-M. 1995Supramolecular Chemistry Concepts and PerspectivesV.C.H.WeinheimGoogle Scholar
  2. 2.
    Hayashita, T., Tsukube, H. 1998J. Incl. Phenom.32105Google Scholar
  3. 3.
    (a) S.A. Nepogodiev and J.F. Stoddart: Chem. Rev. 98, 1959 (1998); (b) BJ.Holliday and C.A. Mirkin: Angew. Chem., Int. Ed. 40, 2022 (2001); (c) M. Fujita, K. Umemoto, M. Yoshizawa, N. Fujita, T. Kusukawa, and K. Biradha: Chem. Commun. 509 (2001).Google Scholar
  4. 4.
    (a) S.L. Wiskur, H. Ait-Haddou, J.J. Lavigne, and E.V. Anslyn: Ac. Chem. Res. 34, 963 (2001); (b) R.R. Shah and N.L. Abbott: Science 293, 1296 (2001); (c) D.T. McQuade, A.E. Pullen, and T.M. Swager: Chem. Rev. 100, 2537 (2000).Google Scholar
  5. 5.
    (a) J. Szejtli and T. Osa (eds.), Comprehensive Supramolecular Chemistry, Pergamon/Elsevier, Oxford (1996), Vol. 3; (b) J. Szejtli: Chem. Rev. 98, 1743 (1998).Google Scholar
  6. 6.
    (a) M.V. Rekharsky and Y. Inoue: Chem. Rev. 98, 1875 (1998); (b) K.A. Connors: Chem. Rev. 97, 1325 (1997).Google Scholar
  7. 7.
    Breslow, R., Dong, S.D. 1998Chem. Rev.981997Google Scholar
  8. 8.
    Uekama, K., Hirayama, F., Irie, T. 1998Chem. Rev.982045Google Scholar
  9. 9.
    (a) J.M. Haider, R.M. Williams, L.D. Cola, and Z. Pikramenou: Angew. Chem., Int. Ed. 42, 1830 (2003); (b) C.A. Stanier, S.J. Alderman, T.D.W. Claridge, and H.L. Anderson: Angew. Chem., Int. Ed. 41, 1769 (2002); (c) N. Nakashima, A. Kawabuchi and H. Murakami: J. Incl Phenom. 32, 363 (1998).Google Scholar
  10. 10.
    (a) A. Ueno, H. Ikeda and J. Wang: In J.P. Desvergne and A.W. Czarnik (eds.), Chemosensors of Ion and Molecule Recognition, NATO ASI Series C 492, Kluwer, London (1997), pp. 105–119; (b) T. Kuwabara, T. Aoyagi, M. Takamura, A. Matsushita, A. Nakamura and A. Ueno: J. Org. Chem. 67, 720 (2002); (c) Y. Takenaka, M. Higashi and N. Yoshida: J. Chem. Soc., Perkin Trans. 2, 615 (2002).Google Scholar
  11. 11.
    Yamauchi, A., Hayashita, T., Nishizawa, S., Watanabe, M., Teramae, N. 1999J. Am. Chem. Soc.1212319Google Scholar
  12. 12.
    Yamauchi, A., Hayashita, T., Kato, A., Nishizawa, S., Watanabe, M., Teramae, N. 2000.Anal. Chem.725841Google Scholar
  13. 13.
    Tong, A.-J., Yamauchi, A., Hayashita, T., Zhang, Z., Smith, B.D., Teramae, N. 2001Anal. Chem.731530Google Scholar
  14. 14.
    Hayashita, T., Yamauchi, A., Kato, A., Tong, A., Smith, B.D., Teramae, N. 2001Bunseki. Kagaku.50355Google Scholar
  15. 15.
    Yamauchi, A., Hayashita, T., Kato, A., Teramae, N. 2002Bull. Chem. Soc. Jpn.751527Google Scholar
  16. 16.
    Hayashita, T., Dai, Q., Minagawa, M., Lee, J.C., Ku, C.H., Teramae, N. 2003Chem. Commun.2160Google Scholar
  17. 17.
    Nishizawa, S., Watanabe, M., Uchida, T., Teramae, N. 1999J. Chem. Soc., Perkin. Trans.2141Google Scholar
  18. 18.
    Silva, A.P., Gunaratne, H.Q.N., Gunnlaugsson, T., Huxley, A.J.M., McCoy, C.P., Rademacher, J.T., Rice, T.E. 1997Chem. Rev.971515Google Scholar
  19. 19.
    Izatt, R.M., Pawlak, K., Bradshaw, J.S., Bruening, R.L. 1991Chem. Rev.911721Google Scholar
  20. 20.
    Grynkiewicz, G., Poenie, M., Tsien, R.Y. 1985J. Biol. Chem.2603440Google Scholar
  21. 21.
    (a) A. Fetch: Crit. Rev. Anal. Chem. 28, 267 (1998); (b) X. Yu, H. Yuan, T. Górecki, and J. Pawliszyn: Anal Chem. 71, 2998 (1999).Google Scholar
  22. 22.
    (a) C.-T. Chen, and W.-P. Huang: J. Am. Chem. Soc. 124, 6246 (2002); (b) S. Deo, and H.A. Godwin: J. Am. Chem. Soc. 122, 174 (2000); (c) W.-S. Xia, R.H. Schmehl, C.-J. Li, J.T. Mague, C.-P. Luo, and D.M. Guldi: J. Phys. Chem. B 106, 833 (2002); (d) M. Minagawa, T. Hayashita, Q. Dai, R.A. Bartsch, and N. Teramae: Bunseki Kagaku 51, 681 (2002).Google Scholar
  23. 23.
    Mëtivier, R., Leray, I., Valeur, B. 2003Chem. Commun.996Google Scholar
  24. 24.
    Koike, T., Watanabe, T., Aoki, S., Kimura, E., Shiro, M. 1996J. Am. Chem. Soc.11812696Google Scholar
  25. 25.
    Fabbrizzi, L., Licchelli, M., Pallavicini, P., Sacchi, D., Taglietti, A. 1996Analyst1211763Google Scholar
  26. 26.
    (a) T. Hayashita, H. Sawano, T. Higuchi, M. Indo, K. Hiratani, Z.-Y. Zhang, and R.A. Bartsch: Anal. Chem. 71, 791 (1999); (b) R. Hayashi, T. Hayashita T. Yoshikawa, K. Hiratani, R.A. Bartsch, and N. Teramae: Bunseki Kagaku 52, 755 (2003).Google Scholar
  27. 27.
    (a) A.P. Davis, and R.S. Wareham: Angew. Chem., Int. Ed. 38, 2978␣(1999); (b) T.P. Henning, and D.C. Cunningham: In G. Ramsay (ed.), Commercial Biosensors: Applications to Clinical, Bioprocess, and Environmental Samples, Wiley, New York (1998).Google Scholar
  28. 28.
    Lorand, J.P., Edwards, J.O. 1959J. Org. Chem.24769Google Scholar
  29. 29.
    Czarnik, A.W. 1992Czarnik, A.W. eds. Fluorescent Chemosensors for Ion, and Molecule RecognitionACS Symposium Series 538, ACS BooksWashington, DC104129Google Scholar
  30. 30.
    (a) S. Shinkai: In J.P. Desvergne, and A.W. Czarnik (eds.), Chemosensors of Ion, and Molecule Recognition, NATO ASI Series C 492, Kluwer, London (1997), pp. 37–59; (b) T.D. James, K.R.A.S. Sandanayake, and S. Shinkai: Angew. Chem., Int. Ed. 35, 1910 (1996); (c) H. Kijima, M. Takeuchi, A. Robertson, S. Shinkai, C.R. Cooper, and T.D. James: Chem. Commun. 2011 (1999).Google Scholar
  31. 31.
    Kavarnos, G.J. 1993Fundamentals of Photoinduced Electron Transfer.Wiley-VCHNew YorkGoogle Scholar
  32. 32.
    Smith, B.D., Gardiner, S.J., Munro, T.A., Paugam, M.F., Riggs, J.A. 1998J. Incl. Phenom.32121Google Scholar
  33. 33.
    Eggert, H., Frederiksen, J., Morin, C., Norrild, J.C. 1999J. Org. Chem.643846Google Scholar
  34. 34.
    Yang, W., He, H., Drueckhammer, D.G. 2001Angew. Chem., Int. Ed.401714Google Scholar
  35. 35.
    He, M., Johnson, R.J., Escobedo, J.O., Beck, P.A., Kim, K.K., St. Luce, N.N., Davis, C.J., Lewis, P.T., Fronczek, F.R., Melancon, B.J., Mrse, A.A., Treleaven, W.D., Strongin, R.M. 2002J. Am. Chem. Soc.1245000Google Scholar
  36. 36.
    Suzuki, I., Obata, K., Anzai, J., Ikeda, H., Ueno, A. 2000J. Chem. Soc., Perkin. Trans.21705Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Takashi Hayashita
    • 1
  • Akiyo Yamauchi
    • 1
  • Ai-Jun Tong
    • 2
  • Jong Chan Lee
    • 3
  • Bradley D. Smith
    • 4
  • Norio Teramae
    • 1
  1. 1.Department of Chemistry, Graduate School of ScienceTohoku UniversityAoba-kuJapan
  2. 2.Department of ChemistryTsinghua UniversityBeijingChina
  3. 3.Department of ChemistryChung-Ang UniversitySeoulKorea
  4. 4.Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameUSA

Personalised recommendations