Bi-objective Motion Planning Approach for Safe Motions: Application to a Collaborative Robot

  • Sonny Tarbouriech
  • Wael SuleimanEmail author


This paper presents a new bi-objective safety-oriented path planning strategy for robotic manipulators. Integrated into a sampling-based algorithm, our approach can successfully enhance the task safety by guiding the expansion of the path towards the safest configurations. Our safety notion consists of avoiding dangerous situations, e.g. being very close to the obstacles, human awareness, e.g. being as much as possible in the human vision field, as well as ensuring human safety by being as far as possible from human with hierarchical priority between human body parts. Experimental validations are conducted in simulation and on the real Baxter research robot. They revealed the efficiency of the proposed method, mainly in the case of a collaborative robot sharing the workspace with humans.


Motion planning Safe motion Collaborative robot Human-robot cooperation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Supplementary material

(MP4 31.3 MB)


  1. 1.
    Loughlin, C., Albu-Schäffer, A., Haddadin, S., Ott, C., Stemmer, A., Wimböck, T., Hirzinger, G.: The DLR lightweight robot: design and control concepts for robots in human environments. Ind. Robot: Int. J 34(5), 376–385 (2007)CrossRefGoogle Scholar
  2. 2.
    Wang, H., Chen, W., Lei, Y., Yu, S.: Kinematic analysis and simulation of a 7-DOF cable-driven manipulator. In: IEEE International Conference on Control and Automation(ICCA), pp 642–647 (2007)Google Scholar
  3. 3.
    Ham, R. V., Sugar, T.G., Vanderborght, B., Hollander, K.W., Lefeber, D.: Compliant actuator designs. Robot. Autom. Mag. IEEE 16(3), 81–94 (2009)CrossRefGoogle Scholar
  4. 4.
    Haddadin, S., Robots, Towards Safe: Approaching Asimov’s, 1st edn. Springer Publishing Company, Incorporated (2013)Google Scholar
  5. 5.
    Cho, C.N., Kim, Y.-L., Song, J.-B.: Adaptation-and-collision detection scheme for safe physical human-robot interaction. In: IEEE 9th Asian Control Conference (ASCC), pp 1–6 (2013)Google Scholar
  6. 6.
    De Luca, A., Albu-Schaffer, A., Haddadin, S., Hirzinger, G.: Collision detection and safe reaction with the DLR-III lightweight manipulator arm. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1623–1630 (2006)Google Scholar
  7. 7.
    Lasota, P.A., Rossano, G.F., Shah, J.A.: Toward Safe Close-Proximity Human-Robot Interaction with Standard Industrial Robots. In: 2014 IEEE International Conference on Automation Science and Engineering (CASE), pp. 339–344 (2014)Google Scholar
  8. 8.
    Nokata, M., Ikuta, K., Ishii, H.: Safety-optimizing method of human-care robot design and control. In: IEEE International Conference on Robotics and Automation, vol. 2, pp. 1991–1996 (2002)Google Scholar
  9. 9.
    Kulić, D., Croft, E.: Pre-collision safety strategies for human-robot interaction. Auton. Robot. 22(2), 149–164 (2007)CrossRefGoogle Scholar
  10. 10.
    Zanchettin, A.M., Lacevic, B.: Sensor-Based Trajectory Generation for Safe Human-Robot Cooperation. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst., Workshop Motion Planning Online, Reactive, Real-Time, Algarve, Portugal (2012)Google Scholar
  11. 11.
    Flacco, F., Kroger, T., De Luca, A., Khatib, O.: A depth space approach to human-robot collision avoidance. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 338–345 (2012)Google Scholar
  12. 12.
    LaValle, S.M.: Planning algorithms. University Press, Cambridge (2006)CrossRefGoogle Scholar
  13. 13.
    Lacevic, B., Rocco, P.: Safety-oriented path planning for articulated robots. Robotica 31(06), 861–874 (2013)CrossRefGoogle Scholar
  14. 14.
    Lacevic, B.: Kinetostatic danger field-a novel safety assessment for human-robot interaction. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2169–2174 (2010)Google Scholar
  15. 15.
    Dragan, A., Srinivasa, S.: Generating legible motion. In: Proceedings of Robotics: Science and Systems, Berlin, Germany (2013)Google Scholar
  16. 16.
    Sisbot, E.A., Alami, R.: A human-aware manipulation planner. IEEE Trans. Robot. 28(5), 1045–1057 (2012)CrossRefGoogle Scholar
  17. 17.
    Tarbouriech, S., Suleiman, W.: On bisection continuous collision checking method: Spherical joints and minimum distance to obstacles. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 7603–7609 (2018)Google Scholar
  18. 18.
    Quinlan, S.: Real-Time Modification of Collision-Free Paths. Ph.D. dissertation, Stanford University (1994)Google Scholar
  19. 19.
    Choset, H.M.: Principles of robot motion: theory, algorithms, and implementation. MIT Press, Cambridge (2005)Google Scholar
  20. 20.
    LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. Int. J. Robot. Res. 20(5), 378–400 (2001)CrossRefGoogle Scholar
  21. 21.
    Kavraki, L.E., Švestka, P., Latombe, J.-C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)CrossRefGoogle Scholar
  22. 22.
    Kavraki, L.E., Kolountzakis, M.N., Latombe, J.-C.: Analysis of probabilistic roadmaps for path planning. IEEE Trans. Robot. Autom. 14(1), 166–171 (1998)CrossRefGoogle Scholar
  23. 23.
    Kuffner, J.J., LaValle, S.M.: RRT-connect: An efficient approach to single-query path planning. In: IEEE International Conference on Robotics and Automation (ICRA), vol. 2, pp. 995–1001 (2000)Google Scholar
  24. 24.
    Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30 (7), 846–894 (2011)CrossRefGoogle Scholar
  25. 25.
    Dobson, A., Krontiris, A., Bekris, K.E.: Sparse roadmap spanners. In: Algorithmic Foundations of Robotics X. Springer, Berlin, pp. 279–296 (2013)Google Scholar
  26. 26.
    Peleg, D., Schäffer, A.A.: Graph spanners. J Graph Theory 13(1), 99–116 (1989)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Dobson, A., Bekris, K.E.: Improving sparse roadmap spanners. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4106–4111 (2013)Google Scholar
  28. 28.
    Dobson, A.: A study on the finite-time near-optimality properties of sampling-based motion planners. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1236–1241 (2013)Google Scholar
  29. 29.
    Janson, L., Schmerling, E., Clark, A., Pavone, M.: Fast marching tree: a fast marching sampling-based method for optimal motion planning in many dimensions. The International Journal of Robotics Research, pp 883–921 (2015)CrossRefGoogle Scholar
  30. 30.
    Salzman, O., Halperin, D.: Asymptotically-optimal motion planning using lower bounds on cost, arXiv:1403.7714 (2014)
  31. 31.
    Salzman, O.: Asymptotically near-optimal rrt for fast, high-quality, motion planning. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4680–4685 (2014)Google Scholar
  32. 32.
    Akgun, B., Stilman, M.: Sampling heuristics for optimal motion planning in high dimensions. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2640–2645 (2011)Google Scholar
  33. 33.
    Jordan, M., Perez, A.: Optimal bidirectional rapidly-exploring random trees, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, Tech. Rep MIT-CSAIL-TR-2013-021 (2013)Google Scholar
  34. 34.
    Corke, P.I.: Safety of advanced robots in human environments, Discussion paper for IARP (1999)Google Scholar
  35. 35.
    Otte, M., Correll, N.: C-forest: Parallel shortest path planning with superlinear speedup. IEEE Trans. Robot. 29(3), 798–806 (2013)CrossRefGoogle Scholar
  36. 36.
    “Cforest parallelization framework., (Visited on 04/23/2019)
  37. 37.
    Sucan, I.A., Chitta, S.: Moveit! [Online]. Available:
  38. 38.
    Şucan, I. A., Moll, M., Kavraki, L.E.: The Open Motion Planning Library. IEEE Robot. Autom. Mag. 19(4), 72–82 (2012). CrossRefGoogle Scholar
  39. 39.
    Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source robot operating system, vol. 3 (2009)Google Scholar
  40. 40.
    Pan, J., Chitta, S., Manocha, D.: FCL: A general purpose library for collision and proximity queries. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3859–3866 (2012)Google Scholar
  41. 41.
    Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: An efficient probabilistic 3D mapping framework based on octrees, Autonomous Robots, software available at (2013)
  42. 42.
    Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 3, pp. 2149–2154 (2004)Google Scholar
  43. 43.
    Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. 17(7), 760–772 (1998). [Online]. Available: CrossRefGoogle Scholar
  44. 44.
    Schwarzer, F., Saha, M., Latombe, J.-C.: Adaptive dynamic collision checking for single and multiple articulated robots in complex environments. IEEE Trans. Robot. 21(3), 338–353 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Electrical and Computer Engineering Department, Faculty of EngineeringUniversity of SherbrookeSherbrookeCanada
  2. 2.Institut Interdisciplinaire d’Innovation Technologique (3IT)Universite de SherbrookeSherbrookeCanada

Personalised recommendations