Advertisement

Communicating Multi-UAV System for Cooperative SLAM-based Exploration

  • Nesrine Mahdoui
  • Vincent FrémontEmail author
  • Enrico Natalizio
Article
  • 40 Downloads

Abstract

In the context of multi-robot system and more generally for Technological System-of-Systems, this paper proposes a multi-UAV (Unmanned Aerial Vehicle) framework for SLAM-based cooperative exploration under limited communication bandwidth. The exploration strategy, based on RGB-D grid mapping and group leader decision making, uses a new utility function that takes into account each robot distance in the group from the unexplored set of targets, and allows to simultaneously explore the environment and to get a detailed grid map of specific areas in an optimized manner. Compared to state-of-the-art approaches, the main novelty is to exchange only the frontier points of the computed local grid map to reduce the shared data volume, and consequently the memory consumption. Moreover, communications constraints are taken into account within a SLAM-based multi-robot collective exploration. In that way, the proposed strategy is also designed to cope with communications drop-out or failures. The multi-UAV system is implemented into ROS and GAZEBO simulators on multiple computers provided with network facilities. Results show that the proposed cooperative exploration strategy minimizes the global exploration time by 25% for 2 UAVs and by 30% for 3 UAVs, while outperforming state-of-the-art exploration strategies based on both random and closest frontiers, and minimizing the average travelled distance by each UAV by 55% for 2 UAVs and by 62% for 3 UAVs. Furthermore, the system performance is also evaluated in a realistic test-bed comprising an infrastructure-less network, which is used to support limited communications. The results of the test-bed show that the proposed exploration strategy uses 10 times less data than a strategy that makes the robots exchanging their whole local maps.

Keywords

Coordinated multi-robot system UAV Autonomous exploration Frontier-based exploration SLAM Inter-robot communications 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work has been carried out in the framework of the Labex MS2T and DIVINA challenge team, which are funded by the French Government, through the program “Investments for the Future”, managed by the French National Research Agency (Reference ANR-11-IDEX-0004-02).

Supplementary material

(MP4 25.8 MB)

References

  1. 1.
    Beard, R.W., McLain, T.W.: Multiple UAV cooperative search under collision avoidance and limited range communication constraints. In: 42nd IEEE International Conference on Decision and Control, vol. 1, pp. 25–30 (2003)Google Scholar
  2. 2.
    Benavides, F., Monzón, P., Chanel, C.P.C., Grampín, E.: Multi-robot cooperative systems for exploration: advances in dealing with constrained communication environments. In: 2016 XIII Latin American Robotics Symposium and IV Brazilian Robotics Symposium (LARS/SBR), pp. 181–186. IEEE (2016)Google Scholar
  3. 3.
    Bennewitz, M., Burgard, W.: An experimental comparison of path planning techniques for teams of mobile robots. In: Autonome Mobile Systeme 2000, pp. 175–182. Springer (2000)Google Scholar
  4. 4.
    Bresson, G., Aufrère, R., Chapuis, R.: A general consistent decentralized simultaneous localization and mapping solution. Robot. Auton. Syst. 74, 128–147 (2015)CrossRefGoogle Scholar
  5. 5.
    Burgard, W., Moors, M., Fox, D., Simmons, R., Thrun, S.: Collaborative multi-robot exploration. In: IEEE International Conference on Robotics and Automation, 2000. Proceedings. ICRA’00, vol. 1, pp. 476–481. IEEE (2000)Google Scholar
  6. 6.
    Burgard, W., Moors, M., Stachniss, C., Schneider, F.E.: Coordinated multi-robot exploration. IEEE Trans. Robot. 21(3), 376–386 (2005)CrossRefGoogle Scholar
  7. 7.
    Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., Leonard, J.J.: Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Trans. Robot. 32(6), 1309–1332 (2016)CrossRefGoogle Scholar
  8. 8.
    Cieslewski, T., Kaufmann, E., Scaramuzza, D.: Rapid exploration with multi-rotors: a frontier selection method for high speed flight. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2017)Google Scholar
  9. 9.
    Couceiro, M.S., Figueiredo, C.M., Rocha, R.P., Ferreira, N.M.: Darwinian swarm exploration under communication constraints: Initial deployment and fault-tolerance assessment. Robot. Auton. Syst. 62(4), 528–544 (2014)CrossRefGoogle Scholar
  10. 10.
    Cunningham, A., Paluri, M., Dellaert, F.: Ddf-Sam: fully distributed slam using constrained factor graphs. In: 2010 IEEE/RSJ International Conference Intelligent Robots and Systems (IROS), IEEE (2010)Google Scholar
  11. 11.
    Dai, R., Fotedar, S., Radmanesh, M., Kumar, M.: Quality-aware UAV coverage and path planning in geometrically complex environments. Ad Hoc Networks (2018)Google Scholar
  12. 12.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Forster, C., Lynen, S., Kneip, L., Scaramuzza, D.: Collaborative monocular slam with multiple micro aerial vehicles. In: 2013 IEEE/RSJ International Conference Intelligent Robots and Systems (IROS), IEEE (2013)Google Scholar
  14. 14.
    Fox, D., Ko, J., Konolige, K., Limketkai, B., Schulz, D., Stewart, B.: Distributed multirobot exploration and mapping. Proc. IEEE 94(7), 1325–1339 (2006)CrossRefGoogle Scholar
  15. 15.
    Fujimura, K., Singh, K.: Planning cooperative motion for distributed mobile agents. J. Rob. Mechatronics 8, 75–80 (1996)CrossRefGoogle Scholar
  16. 16.
    Gupta, L., Jain, R., Vaszkun, G.: Survey of important issues in UAV communication networks. IEEE Commun. Surv. Tutorials 18(2), 1123–1152 (2016).  https://doi.org/10.1109/COMST.2015.2495297 CrossRefGoogle Scholar
  17. 17.
    Heng, L., Gotovos, A., Krause, A., Pollefeys, M.: Efficient visual exploration and coverage with a micro aerial vehicle in unknown environments. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 1071–1078. IEEE (2015)Google Scholar
  18. 18.
    Holz, D., Basilico, N., Amigoni, F., Behnke, S.: Evaluating the efficiency of frontier-based exploration strategies. In: 2010 41St International Symposium on and 2010 6Th German Conference on Robotics (ROBOTIK) Robotics (ISR), pp. 1–8. VDE (2010)Google Scholar
  19. 19.
    Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: Octomap: an efficient probabilistic 3d mapping framework based on octrees. Auton. Robot. 34(3), 189–206 (2013)CrossRefGoogle Scholar
  20. 20.
    Kulich, M., Juchelka, T., Přeučil, L.: Comparison of exploration strategies for multi-robot search. Acta Polytechnica 55(3), 162–168 (2015)CrossRefGoogle Scholar
  21. 21.
    Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers, Norwell (1991)CrossRefGoogle Scholar
  22. 22.
    Mahdoui, N., Fremont, V., Natalizio, E.: Cooperative exploration strategy for micro-aerial vehicles fleet. In: 2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI 2017), pp. 1–6. IEEE, Daegu (2017)Google Scholar
  23. 23.
    Min, B.C., Parasuraman, R., Lee, S., Jung, J.W., Matson, E.T.: A directional antenna based leader–follower relay system for end-to-end robot communications. Robot. Auton. Syst. 101, 57–73 (2018)CrossRefGoogle Scholar
  24. 24.
    Mohanarajah, G., Usenko, V., Singh, M., D’Andrea, R., Waibel, M.: Cloud-based collaborative 3d mapping in real-time with low-cost robots. IEEE Trans. Autom. Sci. Eng. 12(2), 423–431 (2015)CrossRefGoogle Scholar
  25. 25.
    Mur-Artal, R., Tardós, J. D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo and RGB-d cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2017)CrossRefGoogle Scholar
  26. 26.
    Nitsche, M., Krajník, T., Čížek, P., Mejail, M., Duckett, T.: Whycon: an efficent, marker-based localization system. In: IROS Workshop on Open Source Aerial Robotics (2015)Google Scholar
  27. 27.
    Olson, E.: Apriltag: a robust and flexible visual fiducial system. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 3400–3407. IEEE (2011)Google Scholar
  28. 28.
    Pal, A., Tiwari, R., Shukla, A.: Multi robot exploration using a modified a* algorithm. In: Asian Conference on Intelligent Information and Database Systems, pp. 506–516. Springer (2011)Google Scholar
  29. 29.
    Perkins, C.E., Royer, E.M.: Ad-hoc on-demand distance vector routing. In: Proceedings WMCSA’99. Second IEEE Workshop on Mobile Computing Systems and Applications, pp. 90–100 (1999).  https://doi.org/10.1109/MCSA.1999.749281
  30. 30.
    Rocha, R., Dias, J., Carvalho, A.: Cooperative multi-robot systems: a study of vision-based 3-d mapping using information theory. Robot. Auton. Syst. 53(3), 282–311 (2005)CrossRefGoogle Scholar
  31. 31.
    Rooker, M.N., Birk, A.: Multi-robot exploration under the constraints of wireless networking. Control. Eng. Pract. 15(4), 435–445 (2007)CrossRefGoogle Scholar
  32. 32.
    Schmuck, P.: Multi-UAV collaborative monocular slam. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3863–3870. IEEE (2017)Google Scholar
  33. 33.
    Schuster, M.J., Brand, C., Hirschmüller, H., Suppa, M., Beetz, M.: Multi-robot 6D graph slam connecting decoupled local reference filters. In: 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 5093–5100 (2015)Google Scholar
  34. 34.
    Sheng, W., Yang, Q., Tan, J., Xi, N.: Distributed multi-robot coordination in area exploration. Robot. Auton. Syst. 54(12), 945–955 (2006)CrossRefGoogle Scholar
  35. 35.
    Simmons, R., Apfelbaum, D., Burgard, W., Fox, D., Moors, M., Thrun, S., Younes, H.: Coordination for multi-robot exploration and mapping. In: AAAI/IAAI, pp. 852–858 (2000)Google Scholar
  36. 36.
    Solanas, A., Garcia, M.A.: Coordinated multi-robot exploration through unsupervised clustering of unknown space. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004. (IROS 2004). Proceedings, vol. 1, pp. 717–721. IEEE (2004)Google Scholar
  37. 37.
    Werger, B.B., Matarić, M.J.: Broadcast of local eligibility for multi-target observation. In: Distributed Autonomous Robotic Systems, 4, pp. 347–356. Springer (2000)Google Scholar
  38. 38.
    Wu, W., Zhang, F.: Robust cooperative exploration with a switching strategy. IEEE Trans. Robot. 28(4), 828–839 (2012)CrossRefGoogle Scholar
  39. 39.
    Yamauchi, B.: A frontier-based approach for autonomous exploration. In: Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA’97. ’Towards New Computational Principles for Robotics and Automation’, pp. 146–151.  https://doi.org/10.1109/CIRA.1997.613851 (1997)
  40. 40.
    Yamauchi, B.: Frontier-based exploration using multiple robots. In: Proceedings of the Second International Conference on Autonomous Agents, pp. 47–53. ACM (1998)Google Scholar
  41. 41.
    Yan, Z., Jouandeau, N., Cherif, A.A.: A survey and analysis of multi-robot coordination. Int. J. Adv. Robot. Syst. 10(12), 399 (2013)CrossRefGoogle Scholar
  42. 42.
    Yang, S., Scherer, S.A., Yi, X., Zell, A.: Multi-camera visual slam for autonomous navigation of micro aerial vehicles. Robot. Auton. Syst. 93, 116–134 (2017)CrossRefGoogle Scholar
  43. 43.
    Yuan, J., Huang, Y., Tao, T., Sun, F.: A cooperative approach for multi-robot area exploration. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1390–1395. IEEE (2010)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Sorbonne Universités, Université de Technologie de Compiègne, CNRS, UMRCompiègneFrance
  2. 2.Ecole Centrale de Nantes, LS2N, UMR CNRSNantesFrance
  3. 3.Université de Lorraine, LORIA, UMR CNRSVandoeuvre-lès-NancyFrance

Personalised recommendations