Advertisement

Journal of Intelligent & Robotic Systems

, Volume 97, Issue 1, pp 227–248 | Cite as

Three Dimensional Collision Avoidance for Multi Unmanned Aerial Vehicles Using Velocity Obstacle

  • Chee Yong Tan
  • Sunan HuangEmail author
  • Kok Kiong Tan
  • Rodney Swee Huat Teo
Article
  • 25 Downloads

Abstract

Recently, multi-UAV systems are attracting growing interests. It offers wide range of applications in civilian and military environment, carrying out dangerous missions that manned aircraft cannot offer. Currently, an important challenge is the collision avoidance algorithm. The idea is to use the collision avoidance algorithm to control the multi-UAV systems. This will guarantee the safety of the UAVs. The UAVs will complete the missions without colliding with any moving or static obstacles. This topic has motivated the development of various collision avoidance algorithms. In this paper, we proposed some improvements on the three-dimensional velocity obstacle algorithm proposed in Jenie et al. (J. Guid. Control Dyn. 39(10), 2312–2323 25). Our improvements are threefold. First, we indicate the limitations of the original 3D collision avoidance method and present the modifications on the algorithm. Second, we develop the velocity obstacle method to be capable of handling cube obstacles in 3D space. Third, a real flight test is conducted to verify the effectiveness of the proposed three-dimensional velocity obstacle method.

Keywords

Three-dimensional collision avoidance Three-dimensional velocity obstacle method Unmanned aerial vehicles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Huang, S., Teo, R., Liu, W., Dymkou, S.M.: Distributed cooperative UAV loss detection and auto-replacement protocol with guaranteed properties. J. Intell. Robot. Syst. 93(1), 303–316 (2019)CrossRefGoogle Scholar
  2. 2.
    Huang, S., Teo, R., Liu, W., Dymkou, S.M.: Agent model for multi-UAV control via protocol designs. Int. J. Intell. Comput. Cybern. 10(4), 412–429 (2017)CrossRefGoogle Scholar
  3. 3.
    Zhang, G., Shang, B., Chen, Y.Q., Moyes, H.: SmartCaveDrone: 3D cave mapping using UAVs as robotic co-archaeologists. In: 2017 International Conference on Unmanned Aircraft Systems, pp 1052–1057. IEEE, Miami (2017)Google Scholar
  4. 4.
    Zhang, G., Chen, Y.Q., Moyes, H.: Optimal 3D reconstruction of caves using small unmanned aerial systems and GGB-D cameras. In: 2018 International Conference on Unmanned Aircraft Systems (ICUAS), pp 410–415. IEEE, Dallas (2018)Google Scholar
  5. 5.
    Chevet, T., Maniu, C.S., Vlad, C., Zhang, Y.: Voronoi-based UAVs formation deployment and reconfiguration using MPC techniques. In: 2018 International Conference on Unmanned Aircraft Systems (ICUAS), pp 9–14. IEEE, Dallas (2018)Google Scholar
  6. 6.
    Yu, X., Zhang, Y.: Sense and avoid technologies with applications to unmanned aircraft systems: Review and prospects. Progress Aeros. Sci. 74, 152–166 (2015)CrossRefGoogle Scholar
  7. 7.
    Yu, X., Zhou, X., Zhang, Y.: Collision-free trajectory generation and tracking for UAVs using Markov decision process in a cluttered environment. J. Intell. Robot. Syst. 93(1–2), 17–32 (2019)CrossRefGoogle Scholar
  8. 8.
    Zhou, X., Yu, X., Peng, X.: UAV collision avoidance based on varying cells strategy. IEEE Transactions on Aerospace and Electronic Systems, to be published,  https://doi.org/10.1109/TAES.2018.2875556 CrossRefGoogle Scholar
  9. 9.
    Preiss, J.A., Hönig, W., Ayanian, N., Sukhatme, G.S.: Downwash-aware trajectory planning for large quadrotor teams, arXiv:1704.04852v2 [cs.RO] (2017)
  10. 10.
    Manathara, J.G., Ghose D.: Reactive collision avoidance of multiple realistic UAVs. Aircraft Eng. Aerosp. Technol. 83(6), 388–396 (2011)CrossRefGoogle Scholar
  11. 11.
    Lalish, E., Morgansen, K.A.: Distributed reactive collision avoidance. Auton. Robots 32(3), 207–226 (2012)CrossRefGoogle Scholar
  12. 12.
    Lao, M., Tang, J.: Cooperative multi-UAV collision avoidance based on distributed dynamic optimization and causal analysis. Appl. Sci. 7(1), 83 (2017)CrossRefGoogle Scholar
  13. 13.
    Migliaccio, G., Mengali, G., Galatolo, R.: Conflict detection and resolution algorithms for UAVs collision avoidance. Aeronaut. J. 118(1205), 828–842 (2016)CrossRefGoogle Scholar
  14. 14.
    Han, S.C., Bang, H., Yoo, C.S.: Proportional navigation-based collision avoidance for UAVs. Int. J. Control Autom. Syst. 7(4), 553–565 (2009)CrossRefGoogle Scholar
  15. 15.
    Vera, S., Cobano, J.A., Heredia, G., Ollero, A.: Collision avoidance for multiple UAVs using rolling-horizon policy. J. Intell. Robot. Syst. 84(14), 387–396 (2016)CrossRefGoogle Scholar
  16. 16.
    Budiyanto, A., Cahyadi, A., Adji, T.B., Wahyunggoro, O., Grafika, J.: UAV obstacle avoidance using potential field under dynamic environment. In: International Conference on Control, Electronics, Renewable Energy Communications, pp. 187–192 (2015)Google Scholar
  17. 17.
    Mac, T.T., Copot, C., Hernandez, A., De Keyser, R.: Improved potential field method for unknown obstacle avoidance using UAV in indoor environment. In: SAMI 2016 - IEEE 14th International Symposium Applied Machine Intelligence Informatics, pp. 345–350 (2016)Google Scholar
  18. 18.
    Huang, S., Swee, R., Teo, H., Liu, W., Dymkou, S.M.: Distributed cooperative collision avoidance control and implementation for multi-unmanned aerial vehicles. In: Proc. of 2017 11th Asian Control Conference (ASCC), pp. 222–227. Gold Coast (2017)Google Scholar
  19. 19.
    Tan, C.Y., Huang, S., Tan, K.K., Teo, S.H.R.: Three-dimensional cooperative collision avoidance design on unmanned aerial vehicle. In: 2018 International Conference on Unmanned Aircraft Systems, pp. 522–530. Dallas (2018)Google Scholar
  20. 20.
    Jenie, Y.I., Van Kampen, E.-J., de Visser, C.C., Ellerbroek, J., Hoekstra, J.M.: Selective velocity obstacle method for deconflicting maneuvers applied to unmanned aerial vehicles. J. Guid. Control Dyn., 38(6) (2015)CrossRefGoogle Scholar
  21. 21.
    Kuwata, Y., Wolf, M.T., Zarzhitsky, D., Huntsberger, T.L.: Safe maritime navigation with COLREGS using velocity obstacles, 4728–4734 (2011)Google Scholar
  22. 22.
    Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. I. J. Robot. Res 17, 760–772 (1998)CrossRefGoogle Scholar
  23. 23.
    Chakravarthy, A., Ghose, D.: Obstacle avoidance in a dynamic environment: a collision cone approach. IEEE Trans. Syst. Man Cybern. Part A: Syst. Humans 28(5), 562–574 (1998)CrossRefGoogle Scholar
  24. 24.
    Jenie, Y.I., van Kampen, E., de Visser, C.C., Ellerbroek, J., Hoekstra, J.M.: Three-dimensional velocity obstacle method for UAV deconflicting maneuvers. AIAA Guidance, Navigation and Control Conference, 116 (2016)Google Scholar
  25. 25.
    Jenie, Y.I., van Kampen, E.-J., de Visser, C.C., Ellerbroek, J., Hoekstra, J.M.: Three-dimensional velocity obstacle method for uncoordinated avoidance maneuvers of unmanned aerial vehicles. J. Guid. Control Dyn. 39(10), 2312–2323 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  1. 1.DSO National LaboratoriesSingaporeSingapore
  2. 2.Temasek LaboratoriesNational University of SingaporeSingaporeSingapore
  3. 3.Department of Electrical and Computer EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations