Advertisement

Decentralized MPC for UAVs Formation Deployment and Reconfiguration with Multiple Outgoing Agents

  • Thomas ChevetEmail author
  • Cristina Vlad
  • Cristina Stoica Maniu
  • Youmin Zhang
Article
  • 36 Downloads

Abstract

This paper presents a new decentralized algorithm for the deployment and reconfiguration of a multi-agent formation in a convex bounded polygonal area when considering several outgoing agents. The system is deployed over a two-dimensional convex bounded area, each agent being driven by its own linear model predictive controller. At each time instant, the area is partitioned into Voronoi cells associated with each agent. Due to the movement of the agents, this partition is time-varying. The objective of the proposed algorithm is to drive the agents into a static configuration based on the Chebyshev center of each Voronoi cell. When some agents present a non-cooperating behavior (e.g. agents required for a different mission, faulty agents, etc.), they have to leave the formation by tracking a reference outside the system’s workspace. The outgoing agents and their objective positions partition the convex bounded polygonal area into working regions. Each remaining agent will track a new objective point allowing it to avoid the trajectory of the outgoing agents. The computation of this objective position is based on the agent’s safety region (i.e. the intersection of the contracted Voronoi cell and the contracted working region). When the outgoing agents have left the workspace, the remaining agents resume their deployment objective. Simulation results on a formation of a team of unmanned aerial vehicles are finally presented to validate the algorithm proposed in this paper when several agents leave the formation.

Keywords

Multi-agent systems Unmanned aerial vehicles Decentralized model predictive control Voronoi tessellation Formation reconfiguration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the CNRS’ LIA on Information, Learning and Control and the Natural Sciences and Engineering Research Council of Canada.

References

  1. 1.
    Abdolhosseini, M., Zhang, Y.M., Rabbath, C.A.: An efficient model predictive control scheme for an unmanned quadrotor helicopter. J. Intell. Robot. Syst. 70, 27–38 (2013)CrossRefGoogle Scholar
  2. 2.
    Beard, R.W., McLain, T.W., Nelson, D.B., Kingston, D., Johanson, D.: Decentralized cooperative aerial surveillance using fixed-wing miniature UAVs. Proc. IEEE 94(7), 1306–1324 (2006)CrossRefGoogle Scholar
  3. 3.
    Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E.N.: The explicit linear quadratic regulator for constrained systems. Automatica 38(1), 3–20 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Blanchini, F., Miani, S.: Set-Theoretic Methods in Control. Springer (2007)Google Scholar
  5. 5.
    Bouabdallah, S., Murrieri, P., Siegwart, R.: Design and control of an indoor micro quadrotor. In: IEEE International Conference on Robotics and Automation, vol. 5, pp. 4393–4398 (2004)Google Scholar
  6. 6.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)Google Scholar
  7. 7.
    Casbeer, D.W., Beard, R.W., McLain, T.W., Li, S.M., Mehra, R.K.: Forest fire monitoring with multiple small UAVs. In: American Control Conference, pp. 3530–3535 (2005)Google Scholar
  8. 8.
    Chevet, T., Stoica Maniu, C., Vlad, C., Zhang, Y.M.: Voronoi-based UAVs formation deployment and reconfiguration using MPC techniques. In: 2018 International Conference on Unmanned Aircraft Systems, pp. 9–14 (2018)Google Scholar
  9. 9.
    Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks. IEEE Trans. Robot. Autom. 20(2), 243–255 (2004)CrossRefGoogle Scholar
  10. 10.
    Eggleston, H.: Convexity. Cambridge University Press (1958)Google Scholar
  11. 11.
    Gu, Y., Seanor, B., Campa, G., Napolitano, M.R., Rowe, L., Gururajan, S., Wan, S.: Design and flight testing evaluation of formation control laws. IEEE Trans. Control Syst. Technol. 14(6), 1105–1112 (2006)CrossRefGoogle Scholar
  12. 12.
    Hatleskog, J., Olaru, S., Hovd, M.: Voronoi-based deployment of multi-agent system. In: IEEE 57th Conference on Decision and Control, pp. 5403–5408 (2018)Google Scholar
  13. 13.
    Herceg, M., Kvasnica, M., Jones, C.N., Morari, M.: Multi-parametric toolbox 3.0. In: European Control Conference, pp. 502–510 (2013)Google Scholar
  14. 14.
    Lai, L.C., Yang, C.C., Wu, C.J.: Time-optimal control of a hovering quad-rotor helicopter. J. Intell. Robot. Syst. 45, 115–135 (2006)CrossRefGoogle Scholar
  15. 15.
    Laliberte, A.S., Rango, A.: Texture and scale in object-based analysis of subdecimeter resolution unmanned aerial vehicle (UAV) imagery. IEEE Trans. Geosci. Remote Sens. 47(3), 761–770 (2009)CrossRefGoogle Scholar
  16. 16.
    Lozano, R.: Unmanned Aerial Vehicles: Embedded Control. Wiley (2013)Google Scholar
  17. 17.
    Mattingley, J., Boyd, S.: CVXGEN: A code generator for embedded convex optimization. Optim. Eng. 13 (1), 1–27 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Merino, L., Caballero, F., Martínez-de Dios, J.R., Maza, I., Ollero, A.: An unmanned aircraft system for automatic forest fire monitoring and measurement. J. Intell. Robot. Syst. 65(1), 533–548 (2012)CrossRefGoogle Scholar
  19. 19.
    Moarref, M., Rodrigues, L.: An optimal control approach to decentralized energy-efficient coverage problems. 19th IFAC World Congress 47(3), 6038–6043 (2014)Google Scholar
  20. 20.
    Murray, R.M.: Recent research in cooperative control of multivehicle systems. J. Dyn. Syst. Measur. Control 129(5), 571–583 (2007)CrossRefGoogle Scholar
  21. 21.
    Nex, F., Remondino, F.: UAV for 3D mapping applications: A review. Appl. Geom. 6(1), 1–15 (2014)CrossRefGoogle Scholar
  22. 22.
    Nguyen, M.T., Rodrigues, L., Stoica Maniu, C., Olaru, S.: Discretized optimal control approach for dynamic multi-agent decentralized coverage. In: IEEE International Symposium on Intelligent Control, pp. 335–340 (2016)Google Scholar
  23. 23.
    Nguyen, M.T., Stoica Maniu, C.: Voronoi based decentralized coverage problem: From optimal control to model predictive control. In: 24th Mediterranean Conference on Control and Automation, pp. 1307–1312 (2016)Google Scholar
  24. 24.
    Nguyen, M.T., Stoica Maniu, C., Olaru, S.: Optimization-based control for multi-agent deployment via dynamic Voronoi partition. 20th IFAC World Congress 50(1), 1828–1833 (2017)Google Scholar
  25. 25.
    d’Oleire Oltmanns, S., Marzolff, I., Peter, K.D., Ries, J.B.: Unmanned aerial vehicle (UAV) for monitoring soil erosion in Morocco. Remote Sens. 4(11), 3390–3416 (2012)CrossRefGoogle Scholar
  26. 26.
    Papatheodorou, S., Tzes, A.: Cooperative visual convex area coverage using a tessellation-free strategy. In: IEEE 56th Conference on Decision and Control, pp. 4662–4667 (2017)Google Scholar
  27. 27.
    Quintero, S.A.P., Copp, D.A., Hespanha, J.P.: Robust coordination of small UAVs for vision-based target tracking using output-feedback MPC with MHE. In: Cooperative Control of Multi-Agent Systems, pp. 51–83. Wiley-Blackwell (2017)Google Scholar
  28. 28.
    Rinaldi, F., Chiesa, S., Quagliotti, F.: Linear quadratic control for quadrotors UAVs dynamics and formation flight. J. Intell. Robot. Syst. 70, 203–220 (2013)CrossRefGoogle Scholar
  29. 29.
    Schrijver, A.: Theory of Linear and Integer Programming. Wiley (1998)Google Scholar
  30. 30.
    Sharifi, F., Chamseddine, A., Mahboubi, H., Zhang, Y.M., Aghdam, A.G.: A distributed deployment strategy for a network of cooperative autonomous vehicles. IEEE Trans. Control Syst. Technol. 23(2), 737–745 (2015)CrossRefGoogle Scholar
  31. 31.
    Sharifi, F., Mirzaei, M., Zhang, Y.M., Gordon, B.W.: Cooperative multi-vehicle search and coverage problem in an uncertain environment. Unmanned Syst. 3(1), 35–47 (2015)CrossRefGoogle Scholar
  32. 32.
    Sharifi, F., Zhang, Y.M., Aghdam, A.G.: A distributed deployment strategy for multi-agent systems subject to health degradation and communication delays. J. Intell. Robot. Syst. 73, 623–633 (2014)CrossRefGoogle Scholar
  33. 33.
    Siebert, S., Teizer, J.: Mobile 3D mapping for surveying earthwork projects using an unmanned aerial vehicle (UAV) system. Autom. Constr. 41, 1–14 (2014)CrossRefGoogle Scholar
  34. 34.
    Singh, S.N., Pachter, M., Chandler, P., Banda, S., Rasmussen, S., Schumacher, C.: Input–output invertibility and sliding mode control for close formation flying of multiple UAVs. Int. J. Robust Nonlinear Control 10(10), 779–797 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Stevens, B.L., Lewis, F.L., Johnson, E.N.: Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems. Wiley (2015)Google Scholar
  36. 36.
    Stipanović, D.M., Inalhan, G., Teo, R., Tomlin, C.J.: Decentralized overlapping control of a formation of unmanned aerial vehicles. Automatica 40(8), 1285–1296 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Varga, A.: Solving Fault Diagnosis Problems. Springer (2017)Google Scholar
  38. 38.
    Voronoï, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. J. für die reine und angewandte Mathematik 134, 198–287 (1908)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Zhang, Y.M., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control. 32(2), 229–252 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Laboratoire des Signaux et Systèmes (L2S), CentraleSupélec-CNRS-Université Paris-SudUniversité Paris-SaclayGif-sur-YvetteFrance
  2. 2.Department of Mechanical, Industrial and Aerospace EngineeringConcordia UniversityMontréalCanada

Personalised recommendations