Advertisement

Coverage Path Planning for 2D Convex Regions

  • Juan Irving Vasquez-GomezEmail author
  • Magdalena Marciano-Melchor
  • Luis Valentin
  • Juan Carlos Herrera-Lozada
Article
  • 108 Downloads

Abstract

The number of two-dimensional surveying missions with unmanned aerial vehicles has dramatically increased in the last years. To fully automatize the surveying missions it is essential to solve the coverage path planning problem defined as the task of computing a path for a robot so that all the points of a region of interest will be observed. State-of-the-art planners define as the optimal path the one with the minimum number of flight lines. However, the connection path, composed by the path from the starting point to the region of interest plus the path from it to the ending point, is underestimated. We propose an efficient planner for computing the optimal edge-vertex back-and-forth path. Unlike previous approaches, we take into account the starting and ending points. In this article, we demonstrate the vertex-edge path optimality along with in-field experiments using a multirotor vehicle validating the applicability of the planner.

Keywords

Coverage path planning Unmanned aerial vehicle Drone survey Computational geometry Optimal path 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors thank to SNI-México, CONACYT cátedra 1507 and IPN-COFAA program. The authors also thank to Efrén López Jiménez for his support during the flight experiments.

References

  1. 1.
    Ahmadi, S.M., Kebriaei, H., Moradi, H.: Constrained coverage path planning: evolutionary and classical approaches. Robotica 36(6), 904–924 (2018)CrossRefGoogle Scholar
  2. 2.
    An, V., Qu, Z., Crosby, F., Roberts, R., Vithia A.: A triangulation-based coverage path planning. IEEE Transactions on Systems, Man, and Cybernetics, Systems (2018)Google Scholar
  3. 3.
    Arkin, E.M., Fekete, S.P., Mitchell, J.S.B.: Approximation algorithms for lawn mowing and milling. Comput. Geom. 17(1–2), 25–50 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Balampanis, F., Maza, I., Ollero, A.: Coastal areas division and coverage with multiple UAVs for remote sensing. Sensors 17, 4 (2017)CrossRefGoogle Scholar
  5. 5.
    Choset, H., Pignon, P.: Coverage path planning: the boustrophedon cellular decomposition. In: Field and Service Robotics, pp. 203–209. Springer (1998)Google Scholar
  6. 6.
    Coombes, M., Chen, W.-H., Liu, C.: Boustrophedon coverage path planning for UAV aerial surveys in wind. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1563–1571. IEEE (2017)Google Scholar
  7. 7.
    Erdos, D., Erdos, A., Watkins, S.E.: An experimental uav system for search and rescue challenge. IEEE Aerosp. Electron. Syst. Mag. 28(5), 32–37 (2013)CrossRefGoogle Scholar
  8. 8.
    Galceran, E., Carreras, M.: A survey on coverage path planning for robotics. Robot. Auton. Syst. 61(12), 1258–1276 (2013)CrossRefGoogle Scholar
  9. 9.
    Huang, W.H.: Optimal line-sweep-based decompositions for coverage algorithms. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2001, vol. 1, pp. 27–32. IEEE (2001)Google Scholar
  10. 10.
    Shamos, M.l.: Computational Geometry. PhD thesis, Yale University (1978)Google Scholar
  11. 11.
    Li, D., Wang, X., Sun, T.: Energy-optimal coverage path planning on topographic map for environment survey with unmanned aerial vehicles. Electron. Lett. 52(9), 699–701 (2016)CrossRefGoogle Scholar
  12. 12.
    Li, Y., Chen, H., Er, M.J., Wang, X.: Coverage path planning for UAVs based on enhanced exact cellular decomposition method. Mechatronics 21(5), 876–885 (2011)CrossRefGoogle Scholar
  13. 13.
    Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings of the IEEE International Conference on Robotics and Automation 1985, vol 2, pp. 116–121 (1985)Google Scholar
  14. 14.
    Nex, F., Remondino, F.: Uav for 3d mapping applications: A review. Appl. Geom. 6(1), 1–15 (2014)CrossRefGoogle Scholar
  15. 15.
    Pirzadeh, H.: Computational Geometry with the Rotating Calipers. McGill University (1999)Google Scholar
  16. 16.
    Preparata, F., Shamos, M.I.: Computational Geometry: An Introduction. Springer Science & Business Media (1985)Google Scholar
  17. 17.
    Quaritsch, M., Kruggl, K., Wischounig-Strucl, D., Bhattacharya, S., Shah, M., Rinner, B.: Networked uavs as aerial sensor network for disaster management applications. Elektrotechnik und Informationstechnik 127(3), 56–63 (2010)CrossRefGoogle Scholar
  18. 18.
    Song, J., Gupta, S.: ε : An online coverage path planning algorithm. IEEE Trans. Robot. 34(2), 526–533 (2018)CrossRefGoogle Scholar
  19. 19.
    Tokekar, P., Hook, J.V., Mulla, D., Isler, V.: Sensor planning for a symbiotic UAV and UGV system for precision agriculture. IEEE Trans. Robot. 32(6), 1498–1511 (2016)CrossRefGoogle Scholar
  20. 20.
    Torres, M., Pelta, D.A, Verdegay, J.L, Torres, J.C: Coverage path planning with unmanned aerial vehicles for 3d terrain reconstruction. Expert Syst. Appl. 55, 441–451 (2016)CrossRefGoogle Scholar
  21. 21.
    Vasquez-Gomez, J.I., Herrera-Lozada, J.C., Olguin-Carbajal, M.: Spatial resolution optimization for terrain coverage with UAVs. In: Proceedings of International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE 2017), pp. 37–42 (2017)Google Scholar
  22. 22.
    Vasquez-Gomez, J.I., Marciano-Melchor, M., Herrera-Lozada, J.C.: Optimal coverage path planning based on the rotating calipers algorithm. In: Proceedings of International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE) 2017 (2017)Google Scholar
  23. 23.
    Wang, Y., Kirubarajan, T., Tharmarasa, R., Jassemi-Zargani, R., Kashyap, N.: Multi-period coverage path planning and scheduling for airborne surveillance. IEEE Trans. Aerospace Electron. Syst. PP(99), 1–1 (2018)Google Scholar
  24. 24.
    Wei, M., Isler, V.: Coverage path planning under the energy constraint. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2018, pp. 368–373. IEEE (2018)Google Scholar
  25. 25.
    Xie, J., Jin, L., Rodolfo, L., Carrillo, G.: Optimal path planning for unmanned aerial systems to cover multiple regions. In: AIAA Scitech 2019 Forum, p. 1794 (2019)Google Scholar
  26. 26.
    Zhu, D., Tian, C., Sun, B., Luo, C.: Complete coverage path planning of autonomous underwater vehicle based on gbnn algorithm. Journal of Intelligent & Robotic Systems (2018)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Instituto Politécnico Nacional (IPN)Consejo Nacional de Ciencia y Tecnología (CONACYT)México CityMéxico
  2. 2.CIDETECInstituto Politécnico NacionalMéxico CityMéxico
  3. 3.Centro de Investigaciones en Óptica (CIO)Consejo Nacional de Ciencia y Tecnología (CONACyT)AguascalientesMéxico

Personalised recommendations