Search and Localization of a Weak Source with a Multi-robot Formation

  • Alessandro RenzagliaEmail author
  • Lara Briñón-Arranz


This paper proposes an algorithm to guide a formation of mobile robots, subject to communication constraints, from an arbitrary position to the location of the source of a physical signal in a planar environment. The information on the signal is only based on noisy measurements of its strength collected during the mission and the signal is considered to be weak and indistinguishable from the noise in a large portion of the environment. The goal of the team is thus to search for a reliable signal and finally converge to the source location. An accurate estimation of the signal gradient is obtained by fusing the data gathered by the robots while moving in a circular formation. The algorithm proposed to steer the formation, called Gradient-biased Correlated Random Walk (GCRW), exploits the gradient estimation to bias a correlated random walk, which ensures an efficient non-oriented search motion when far from the source. The resulting strategy is so able to obtain a suitable trade-off between exploration and exploitation. Results obtained in simulated experiments, including comparisons with possible alternatives, are presented to analyze and evaluate the performance of the proposed approach.


Multi-robot systems Source seeking Robotic sensor networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Balch, T., Arkin, R.C.: Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Autom. 14(6), 926–939 (1998)CrossRefGoogle Scholar
  2. 2.
    Bartumeus, F., Catalan, J., Viswanathan, G., Raposo, E., Da Luz, M.: The influence of turning angles on the success of non-oriented animal searches. J. Theor. Biol. 252(1), 43–55 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bayat, B., Crasta, N., Crespi, A., Pascoal, A.M., Ijspeert, A.: Environmental monitoring using autonomous vehicles: a survey of recent searching techniques. Curr. Opin. Biotechnol. 45, 76–84 (2017)CrossRefGoogle Scholar
  4. 4.
    Briñón-Arranz, L., Seuret, A., Canudas-de-Wit, C.: Cooperative control design for time-varying formations of multi-agent systems. IEEE Trans. Autom. Control 59(8), 2283–2288 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Briñón-Arranz, L., Schenato, L., Seuret, A.: Distributed source seeking via a circular formation of agents under communication constraints. IEEE Trans. Control Net. Sys. 3(2), 104–115 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chang, D., Wu, W., Webster, D.R., Weissburg, M.J., Zhang, F.: A bio-inspired plume tracking algorithm for mobile sensing swarms in turbulent flow. In: IEEE International Conference on Robotics and Automation (ICRA), pp 921–926 (2013)Google Scholar
  7. 7.
    Dunbabin, M., Marques, L.: Robots for environmental monitoring: significant advancements and applications. IEEE Robot. Autom. Mag. 19(1), 24–39 (2012)CrossRefGoogle Scholar
  8. 8.
    Hajieghrary, H., Hsieh, A., Schwartz, I.B.: Multi-agent search for source localization in a turbulent medium. Phys. Lett. A 380(20), 1698–1705 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kumar, V., Rus, D., Singh, S.: Robot and sensor networks for first responders. IEEE Pervasive Comput. 3(4), 24–33 (2004)CrossRefGoogle Scholar
  10. 10.
    Li, W., Farrell, J.A., Pang, S., Arrieta, R.M.: Moth-inspired chemical plume tracing on an autonomous underwater vehicle. IEEE Trans. Robot. 22(2), 292–307 (2006)CrossRefGoogle Scholar
  11. 11.
    Marques, L., Nunes, U., de Almeida, A.T.: Particle swarm-based olfactory guided search. Auton. Robot. 20(3), 277–287 (2006)CrossRefGoogle Scholar
  12. 12.
    Ogren, P., Fiorelli, E., Leonard, N.E.: Cooperative control of mobile sensor networks: adaptive gradient climbing in a distributed environment. IEEE Trans. Autom. Control 49(8), 1292–1302 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Pasternak, Z., Bartumeus, F., Grasso. F.W.: Lévy-taxis: a novel search strategy for finding odor plumes in turbulent flow-dominated environments. J. Phys. A Math. Theor., 42(43), 1–13 (2009)Google Scholar
  14. 14.
    Patlak, C.S.: Random walk with persistence and external bias. Bull. Math. Biophys. 15(3), 311–338 (1953)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Reynolds, A.M.: Bridging the gulf between correlated random walks and Lévy walks: autocorrelation as a source of Lévy walk movement patterns. J. R. Soc. Interface 7(53), 1753–1758 (2010)CrossRefGoogle Scholar
  16. 16.
    Russell, R.A., Bab-Hadiashar, A., Shepherd, R.L., Wallace, G.G.: A comparison of reactive robot chemotaxis algorithms. Robot. Auton. Syst. 45(2), 83–97 (2003)CrossRefGoogle Scholar
  17. 17.
    Sutantyo, D.K., Kernbach, S., Levi, P., Nepomnyashchikh, V.A.: Multi-robot searching algorithm using Lévy flight and artificial potential field. In: IEEE International Workshop on Safety Security and Rescue Robotics (SSRR), pp 1–6 (2010)Google Scholar
  18. 18.
    Vergassola, M., Villermaux, E., Shraiman, B.I.: Infotaxis as a strategy for searching without gradients. Nature 445(7126), 406 (2007)CrossRefGoogle Scholar
  19. 19.
    Viswanathan, G., Afanasyev, V., Buldyrev, S.V., Havlin, S., Da Luz, M., Raposo, E., Stanley, H.E.: Lévy flights in random searches. Physica A: Statistical Mechanics and its Applications 282(1), 1–12 (2000)CrossRefGoogle Scholar
  20. 20.
    Viswanathan, G., Raposo, E., Bartumeus, F., Catalan, J., Da Luz, M.: Necessary criterion for distinguishing true superdiffusion from correlated random walk processes. Phys. Rev. E. 72(1), 1–6 (2005)Google Scholar
  21. 21.
    Viswanathan, G.M., Buldyrev, S.V., Havlin, S., Da Luz, M., et al.: Optimizing the success of random searches. Nature 401(6756), 911 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.INRIA Grenoble and INSA CITI Lab LyonUniversité Grenoble-AlpesGrenobleFrance
  2. 2.Université Grenoble Alpes, CEA, LETIGrenobleFrance

Personalised recommendations