Advertisement

A Revised Monte Carlo Method for Target Location with UAV

  • Dongzhen Wang
  • Cheng Xu
  • Pengfei Yuan
  • Daqing HuangEmail author
Article

Abstract

Target location using UAV equipped with vision system has played an important role in many applications but there remain challenges. One of the principal difficulties is to position a target with a high accuracy, particularly in some specific conditions. There are many factors impacting location accuracies, such as turret setup process, sensors intrinsic properties, movement noise and GPS data precision. The most common and notable factors are the movement noise and sensors noise, which are tricky to be eliminated or compensated. Solutions to dealing with noise are mainly from methods such as recursive least square method, least square and Kalman filtering methods. But these routine methods will meet their bottlenecks when locating some plane based targets, a common scenario in target location applications. In this case, the usual methods are subject to target pointing bias of line of sight owing to the specific geometric condition. To eliminate this kind of location bias, an improved Monte Carlo method is proposed in this paper which first estimates the bias of pointing deviation for each measurement with statistical methods and then subtracts the estimated biases in a variance optimization process. Relevant experiments are conducted showing an obvious advantage of the proposed method over the other methods.

Keywords

Monte Carlo Target location UAV Bias 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research work is supported by National Natural Science Foundation (grant No.61601222), the authors acknowledge the assistance of Mr Ma for checking the draft of this paper.

References

  1. 1.
    Manathara, J.G., Sujit, P.B., Beard, R.W.: Multiple uav coalitions for a search and prosecute mission. J. Intell. Robot. Syst. 62(1), 125 (2011).  https://doi.org/10.1007/s10846-010-9439-2 CrossRefzbMATHGoogle Scholar
  2. 2.
    Kwon, H., Pack, D.J.: A robust mobile target localization method for cooperative unmanned aerial vehicles using sensor fusion quality. J. Intell. Robot. Syst. 65(1), 479 (2012).  https://doi.org/10.1007/s10846-011-9581-5 CrossRefGoogle Scholar
  3. 3.
    Kim, M.H., Baik, H., Lee, S.: Response threshold model based uav search planning and task allocation. J. Intell. Robot. Syst. 75(3), 625 (2014).  https://doi.org/10.1007/s10846-013-9887-6 CrossRefGoogle Scholar
  4. 4.
    Valavanis, K.P., Valavanis, K.P.: Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy, 1st edn. Springer Publishing, Company Incorporated (2007)Google Scholar
  5. 5.
    Sohn, S., Lee, B., Kim, J., Kee, C.: Vision-based real-time target localization for single-antenna gps-guided uav. IEEE Trans. Aerosp. Electron. Syst. 44(4), 1391 (2008)CrossRefGoogle Scholar
  6. 6.
    Gavish, M., Fogel, E.: Effect of bias on bearing-only target location. IEEE Trans. Aerosp. Electron. Syst. 26(1), 22 (2002)CrossRefGoogle Scholar
  7. 7.
    Dogancay, K.: In: Signal Processing Conference, 2004 European, pp. 1123–1126 (2015)Google Scholar
  8. 8.
    Gavish, M., Weiss, A.J.: Performance analysis of bearing-only target location algorithms. IEEE Trans. Aerosp. Electron. Syst. 28(3), 817 (1992)CrossRefGoogle Scholar
  9. 9.
    Barber, D.B., Redding, J.D., McLain, T.W., Beard, R.W., Taylor, C.N.: Vision-based target geo-location using a fixed-wing miniature air vehicle. J. Intell. Robot. Syst. 47(4), 361 (2006).  https://doi.org/10.1007/s10846-006-9088-7 CrossRefGoogle Scholar
  10. 10.
    Pachter, M., Chandler, P.R., Ceccarelli, N.: Vision-based target geolocation using micro air vehicles. J. Guid. Control Dyn. 31(3), 597 (2008)CrossRefGoogle Scholar
  11. 11.
    Kukreti, S., Kumar, M., Cohen, K.: Genetic fuzzy based target geo-localization using unmanned aerial systems for firefighting applications, 2018 AIAA Information systems-AIAA Infotech @ Aerospace (2018)Google Scholar
  12. 12.
    Chowdhary, G., Sobers, D.M., Pravitra, C., Christmann, C., Wu, A., Hashimoto, H., Ong, C., Kalghatgi, R., Johnson, E.N.: Self-contained autonomous indoor flight with ranging sensor navigation. J. Guid. Control Dyn. 35(6), 1843–1854 (2016)CrossRefGoogle Scholar
  13. 13.
    Mohr, B.B., Fitzpatrick, D.L.: Micro air vehicle navigation system. IEEE Aerosp. Electron. Syst. Mag. 23 (4), 19 (2008).  https://doi.org/10.1109/MAES.2008.4493438 CrossRefGoogle Scholar
  14. 14.
    Minaeian, S., Liu, J., Son, Y.J.: Vision-based target detection and localization via a team of cooperative uav and ugvs. IEEE Trans. Syst. Man Cybern. Syst. 46(7), 1005 (2016).  https://doi.org/10.1109/TSMC.2015.2491878 CrossRefGoogle Scholar
  15. 15.
    Chaimowicz, L., Grocholsky, B., Keller, J.F., Kumar, V., Taylor, C.J.: Experiments in multirobot air-ground coordination. In: International Conference on Robotics and Automation, vol. 4, p. 4053 (2004)Google Scholar
  16. 16.
    Madison, R., DeBitetto, P., Olean, A.R., Peebles, M.: In: 2008 IEEE Aerospace Conference, pp. 1–19.  https://doi.org/10.1109/AERO.2008.4526560 (2008)
  17. 17.
    Metropolis, N.: The beginning of the monte-carlo method. Los Alamos Science (15Special), pp. 125 (1987)Google Scholar
  18. 18.
    Seila, A.: Simulation and the monte carlo method. Technometrics 24(2), 167 (2007)CrossRefGoogle Scholar
  19. 19.
    Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M.: Eco: Efficient convolution operators for tracking, pp. 6931–6939 (2016)Google Scholar
  20. 20.
    Sillard, P., Boucher, C.: Improvement of the transformation between itrf and doppler-realized wgs84. J. Geod. 70(11), 768 (1996).  https://doi.org/10.1007/BF00867155 CrossRefGoogle Scholar
  21. 21.
    Bertsekas, D.P., Tsitsiklis, J.N.: Introduction to Probability (Athena Scientific) (2002)Google Scholar
  22. 22.
    Piessens, R.: Gaussian quadrature formulas for the numerical integration of bromwich’s integral and the inversion of the laplace transform. J. Eng. Math. 5(1), 1 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Gabutti, B., Pittaluga, G., Sacripante, L.: An introduction to orthogonal polynomials. Math. Gaz. 13 (5), 228C238 (1995)zbMATHGoogle Scholar
  24. 24.
    Laurie, D.P.: Computation of gauss-type quadrature formulas. J. Comput. Appl. Math. 127(1C2), 201 (2001)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Communication and Information systemNanjing University of Aeronautics and AstronauticsDistrit Jiangning NanjingChina
  2. 2.UAV Research InstituteNanjing University of Aeronautics and AstronauticsNanjingChina
  3. 3.School of Electronics EngineringNanjing Xiaozhuang UniversityNanjingChina

Personalised recommendations