Journal of Intelligent & Robotic Systems

, Volume 96, Issue 3–4, pp 529–540 | Cite as

Experimental Characterization of a Propulsion System for Multi-rotor UAVs

  • Daniele SartoriEmail author
  • Wenxian Yu


The propulsion system of a multi-rotor UAV plays a fundamental role in the aircraft flight characteristics. In fact, it generally represents the major contributor to the aerodynamic forces acting on the vehicle. While several approaches for modeling rotor thrust and drag forces exist, the problem of identifying the parameters for these models is still challenging. In this paper we propose a systematic method for identifying a limited number of parameters which guarantee accurate thrust and drag prediction according to Blade Element Theory (BET). Simple experimental tests employing a popular rotor system and a custom-made quadrotor are used both in the identification phase and for the final validation. The discussion of the results illustrates the accuracy of the method, while highlighting the modeling limit of BET. A refinement using Blade Element Momentum Theory is proposed and validated with the support of experimental data.


UAV Propulsion Rotor Testing Modeling Multi-rotor Quadrotor aircraft Blade element theory Blade element momentum theory Thrust Drag Flapping 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors wish to thank Ruocheng Yao, Weiqi Liu and Rongzhi Wang for the support in the realization of the experimental tests.


  1. 1.
    Abeywardena, D., Kodagoda, S., Dissanayake, G., Munasinghe, R.: Improved state estimation in quadrotor mavs: a novel drift-free velocity estimator. IEEE Robot. Autom. Mag. 20(4), 32–39 (2013)CrossRefGoogle Scholar
  2. 2.
    Bangura, M., Melega, M., Naldi, R., Mahony, R.: Aerodynamics of rotor blades for quadrotors. arXiv:1601.00733 (2016)
  3. 3.
    Bazin, J.M., Fields, T.D., Smith, A.J.: Feasibility of in-flight quadrotor individual motor thrust measurements. In: AIAA Atmospheric Flight Mechanics Conference (2016)Google Scholar
  4. 4.
    Bristeau, P.J., Martin, P., Salaün, E., Petit, N.: The role of propeller aerodynamics in the model of a quadrotor UAV. In: European Control Conference, pp 683–688 (2009)Google Scholar
  5. 5.
    Capello, E., Park, H., Tavora, B., Guglieri, G., Romano, M.: Modeling and experimental parameter identification of a multicopter via a compound pendulum test rig. In: 2015 Workshop on Research, Education and Development of Unmanned Aerial Systems (2015)Google Scholar
  6. 6.
    DJI: DJI E310 propulsion system. (2018)
  7. 7.
    Gill, R., D’Andrea, R.: Propeller thrust and drag in forward flight. In: IEEE Conference on Control Technology and Applications (2017)Google Scholar
  8. 8.
    Hoffmann, G.M., Huang, H., Waslander, S.L., Tomlin, C.J.: Quadrotor helicopter flight dynamics and control: theory and experiment. In: AIAA Guidance Navigation and Control Conference and Exhibit (2007)Google Scholar
  9. 9.
    Hung, L.N., Bon, L.S.: A quadcopter-based auto cameraman system. In: 2016 (IEEE) Virtual Conference on Applications of Commercial Sensors (VCACS), pp 1–8 (2016)Google Scholar
  10. 10.
    Khan, W., Nahon, M.: Toward an accurate physics-based uav thruster model. IEEE/ASME Trans. Mechatron. 18(4), 1269–1279 (2013)CrossRefGoogle Scholar
  11. 11.
    Lai, W.Y., Er, M.J., Ng, Z.C., Goh, Q.W.: Semi-autonomous control of an unmanned aerial vehicle. In: 2016 14Th International Conference on Control, Automation, Robotics and Vision (ICARCV), pp 1–4 (2016)Google Scholar
  12. 12.
    Leishman, J.G.: Principle of Helicopter Aerodynamics, 2nd edn. Cambridge University Press, Cambridge (2006)Google Scholar
  13. 13.
    Leishman, R.C., Macdonald, J.C., Beard, R.W., McLain, T.W.: Quadrotors and accelerometers: State estimation with an improved dynamic model. IEEE Control. Syst. 34(1), 28–41 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Loianno, G., Spurny, V., Thomas, J., Baca, T., Thakur, D., Hert, D., Penicka, R., Krajnik, T., Zhou, A., Cho, A., Saska, M., Kumar, V.: Localization, grasping, and transportation of magnetic objects by a team of (MAVs) in challenging desert-like environments. IEEE Robotics and Automation Letters 3(3), 1576–1583 (2018)CrossRefGoogle Scholar
  15. 15.
    Mahony, R.E., Kumar, V., Corke, P.: Multirotor aerial vehicles: modeling, estimation, and control of quadrotor. IEEE Robot. Autom. Mag. 19(3), 20–32 (2012)CrossRefGoogle Scholar
  16. 16.
    Martin, P., Salaün, E.: The true role of accelerometer feedback in quadrotor control. In: IEEE International Conference on Robotics and Automation, pp 1623–1629 (2010)Google Scholar
  17. 17.
    McCormick, B.W.: Aerodynamics, Aeronautics, and Flight Mechanics, 2nd edn. Wiley, New York (1994)Google Scholar
  18. 18.
    Meier, L., Tanskanen, P., Heng, L., Lee, G.H., Fraundorfer, F., Pollefeys, M.: PIXHAWK: a micro aerial vehicle design for autonomous flight using onboard computer vision. Auton. Robot. 33, 21–39 (2012)CrossRefGoogle Scholar
  19. 19.
    Omari, S., Hua, M.D., Ducard, G., Hamel, T.: Nonlinear control of VTOL UAVs incorporating flapping dynamics. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 2419–2425 (2013)Google Scholar
  20. 20.
    Pounds, P., Mahony, R.E., Corke, P.: Modelling and control of a large quadrotor robot. Control. Eng. Pract. 18(7), 691–699 (2010)CrossRefGoogle Scholar
  21. 21.
    Powers, C., Mellinger, D., Kushleyev, A., Kothmann, B., Kumar, V.: Influence of aerodynamics and proximity effects in quadrotor flight. Experimental Robotics Springer Tracts in Advanced Robotics 88, 289–302 (2013)CrossRefGoogle Scholar
  22. 22.
    Sartori, D., Zou, D., Pei, L., Yu, W.: A revisited approach to lateral acceleration modeling for quadrotor UAVs state estimation. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 5711–5718 (2018)Google Scholar
  23. 23.
    da Silva, L.C.B., Bernardo, R.M., de Oliveira, H.A., Rosa, P.F.F.: Multi-UAV agent-based coordination for persistent surveillance with dynamic priorities. In: 2017 International Conference on Military Technologies (ICMT), pp 765–771 (2017)Google Scholar
  24. 24.
    Vacek, L., Atter, E., Rizo, P., Nam, B., Kortvelesy, R., Kaufman, D., Das, J., Kumar, V.: sUAS for deployment and recovery of an environmental sensor probe. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp 1022–1029 (2017)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Shanghai Key Laboratory of Beidou Navigation and Location ServicesShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations