Review and Analysis of Search, Extraction, Evacuation, and Medical Field Treatment Robots

  • Adam Williams
  • Bijo Sebastian
  • Pinhas Ben-TzviEmail author


One of the most impactful and exciting applications of robotic technology, especially autonomous and semi-autonomous systems, is in the field of search and rescue. Robots present an opportunity to go where rescuers cannot, keep responders out of danger, work indefatigably, and augment the capabilities of the humans who put their lives at risk while helping others. This paper examines the use of robotic systems in human rescue applications, with an emphasis on performing search, extraction, evacuation, and medical field treatment procedures. The work begins with a review of the various robotic systems designed to perform one or more of the above operations. The relative merits of each system are discussed along with their shortcomings. The paper also addresses the use of robotic competitions as a means of benchmarking field robotic systems. Based on the review of state of the art systems, a novel concept (Semi- Autonomous Victim Extraction Robot) designed to address the shortcomings of existing systems is described in the conclusion, along with detailed discussion on how it improves upon state of the art systems. The future research thrusts to be explored before realizing a fully integrated robotic rescue system are also detailed.


Search and rescue robots Casualty extraction Human-robot interaction Autonomous systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported by the US Army Medical Research & Materiel Command’s Telemedicine & Advanced Technology Research Center (TATRC), under Contract No. W81XWH-16-C-0062. The views, opinions, and/or findings contained in this report are those of the authors and should not be construed as an official Department of the Army position, policy, or decision unless so designated by other documentation.


  1. 1.
    Dickey, N.W.: Combat trauma lessons learned from military operations of 2001-2013. Defense Health Board (2015)Google Scholar
  2. 2.
    International Federation of Red Cross and Red Crescent Societies (IFRC), World disasters report 2009: Focus on Early Warning, Early Action. GenevaGoogle Scholar
  3. 3.
    Dinh, M.M., Bein, K., Roncal, S., Byrne, C.M., Petchell, J., Brennan, J.: Redefining the golden hour for severe head injury in an urban setting: The effect of prehospital arrival times on patient outcomes. Injury 44(5), 606–610 (2013)CrossRefGoogle Scholar
  4. 4.
    Harmsen, A.M.K., Giannakopoulos, G.F., Moerbeek, P.R., Jansma, E.P., Bonjer, H.J., Bloemers, F.W.: The influence of prehospital time on trauma patients outcome: A systematic review. Injury 46(4), 602–609 (2015)CrossRefGoogle Scholar
  5. 5.
    Lerner, E.B., Moscati, R.M.: The golden hour: Scientific fact or medical ‘urban legend’? Acad. Emerg. Med. 8(7), 758–760 (2001)CrossRefGoogle Scholar
  6. 6.
    Newgard, C.D., Schmicker, R.H., Hedges, J.R., Trickett, J.P., Davis, D.P., Bulger, E.M., Aufderheide, T.P., Minei, J.P., Hata, J.S., Gubler, K.D., Brown, T.B., Yelle, J.D., Bardarson, B., Nichol, G.: Emergency medical services intervals and survival in trauma: Assessment of the ‘golden hour’ in a North American prospective cohort. Ann. Emerg. Med. 55(3), 235–246 (2010)CrossRefGoogle Scholar
  7. 7.
    Kotwal, R.S., Howard, J.T., Orman, J.A., Tarpey, B.W., Bailey, J.A., Champion, H.R., Mabry, R.L., Holcomb, J.B., Gross, K.R.: The effect of a golden hour policy on the morbidity and mortality of combat casualties. JAMA Surg. 151(1), 15–24 (2016)CrossRefGoogle Scholar
  8. 8.
    Eastridge, B.J., Hardin, M., Cantrell, J., Oetjen-Gerdes, L., Zubko, T., Mallak, C., Wade, C.E., Simmons, J., Mace, J., Mabry, R., Bolenbaucher, R., Blackbourne, L.H.: Died of wounds on the battlefield: Causation and implications for improving combat casualty care. J. Trauma Inj. Infect. Crit. Care 71, S4–S8 (2011)CrossRefGoogle Scholar
  9. 9.
    U.S. Army Medical Research and Material Command: Unmanned Systems Teaming for Semi-Autonomous Casualty Extraction, SBIR-STTR (2017) [Online]. Available: [Accessed: 11 Feb 2017]
  10. 10.
    Chapman, P.L., Cabrera, L.D., Varela-Mayer, C., Baker, M.M., Elnitsky, C., Figley, C., Thurman, R.M., Lin, C.-D., Mayer, L.P.: Training, deployment preparation, and combat experiences of deployed health care personnel: Key findings from deployed U.S. Army combat medics assigned to line units. Mil. Med. 177(3), 270–277 (2012)CrossRefGoogle Scholar
  11. 11.
    Department of Homeland Security: First Responder Guide for Improving Survivability in Improvised Explosive Device and/or Active Shooter Incidents (2015) [Online]. Available: Responder Guidance June 2015 FINAL 2.pdf. [Accessed: 01 Dec 2018]
  12. 12.
    Beebe, K.M., Gilbert, G.R.: Robotics and unmanned systems – ‘game changers’ for combat medical missions, NATO RTO-HFM 182 Symp. Adv. Technol. New Proced. Med. F Oper. (2010)Google Scholar
  13. 13.
    Snyder, R.G.: Robots assist in search and rescue efforts at WTC. IEEE Robot. Autom. Mag. 8, 26–28 (2001)Google Scholar
  14. 14.
    Atwood, T., Klein, J.: VECNA’s battlefild extraction-assist robot BEAR, Robot Magazine [Online]. Available:, [Accessed: 01 Dec 2018] (2007)
  15. 15.
    Watts, R., Rowe, P., Gilbert, G: TATRC and TARDEC collaborative robots program (2004)Google Scholar
  16. 16.
    Gilbert, G., Turner, T., Marchessault, R: Army medical robotics research (2007)Google Scholar
  17. 17.
    Freschi, C., Ferrari, V., Melfi, F., Ferrari, M., Mosca, F., Cuschieri, A.: Technical review of the da Vinci surgical telemanipulator. Int J Med Robot Comput Assisted Surgery 9(4), 396–406 (2013)CrossRefGoogle Scholar
  18. 18.
    Marescaux, J., Rubino, F.: The ZEUS robotic system: Experimental and clinical applications. Surg Clinics North Amer 83(6), 1305–1315 (2003)CrossRefGoogle Scholar
  19. 19.
    Davids, A.: Urban search and rescue robots: From tragedy to technology. IEEE Intell. Syst. 17(2), 81–83 (2002)Google Scholar
  20. 20.
    Murphy, R.R.: A decade of rescue robots. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5448–5449 (2012)Google Scholar
  21. 21.
    Nagatani, K., Kiribayashi, S., Okada, Y., Otake, K., Yoshida, K., Tadokoro, S., Nishimura, T., Yoshida, T., Koyanagi, E., Fukushima, M., Kawatsuma, S.: Emergency response to the nuclear accident at the Fukushima Daiichi nuclear power plants using mobile rescue robots. J. F. Robot. 30(1), 44–63 (2013)CrossRefGoogle Scholar
  22. 22.
    Murphy, R.R., Tadokoro, S., Nardi, D., Jacoff, A., Fiorini, P., Choset, H., Erkmen, A.M.: Search and rescue robotics. In: Springer Handbook of Robotics, pp. 1151–1173. Springer (2008)Google Scholar
  23. 23.
    Nagatani, K., Kiribayashi, S., Okada, Y., Tadokoro, S., Nishimura, T., Hada, Y., Yoshida, T., Koyanagi, E.: Redesign of rescue mobile robot Quince. In: IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 13–18 (2011)Google Scholar
  24. 24.
    Murphy, R., Casper, J., Hyams, J., Micire, M., Minten, B: Mobility and sensing demands in USAR. In: IECON Proceedings (Industrial Electronics Conference), vol. 1, pp. 138–142 (2000)Google Scholar
  25. 25.
    Casper, J., Murphy, R.R.: Human-robot interactions during the robot-assisted urban search and rescue response at the World Trade Center. IEEE Trans. Syst. Man, Cybern. Part B Cybern. 33(3), 367–385 (2003)CrossRefGoogle Scholar
  26. 26.
    Murphy, R.R.: Disaster Robotics. MIT Press (2014)Google Scholar
  27. 27.
    Micire, M.J.: Evolution and field performance of a rescue robot. J. F. Robot. 25(1–2), 17–30 (2008)CrossRefGoogle Scholar
  28. 28.
    Burion, S.: Human detection for robotic urban search and rescue. Institut De Production Robotique (IPR) Diploma Work (2004)Google Scholar
  29. 29.
    Murphy, R.R., Kravitz, J., Stover, S.L., Shoureshi, R.: Mobile robots in mine rescue and recovery. IEEE Robot. Autom. Mag. 16(2), 91–103 (2009)CrossRefGoogle Scholar
  30. 30.
    Murphy, R.R.: Trial by fire. IEEE Robot. Autom. Mag. 11(3), 50–61 (2004)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Guizzo, E.: Rescue-robot show-down. IEEE Spectr. 51(1), 52–55 (2014)CrossRefGoogle Scholar
  32. 32.
    Bruggemann, B., Wildermuth, D., Schneider, F.E.: Field and Service Robotics, vol. 62. Springer Tracts in Advanced Robotics (2010)Google Scholar
  33. 33.
    Yamauchi, B.M.: PackBot: A versatile platform for military robotics. In: Unmanned Ground Vehicle Technology VI, vol. 5422, pp. 228–237 (2004)Google Scholar
  34. 34.
    Shah, B., Choset, H.: Survey on urban search and rescue robots. J. Robot. Soc. Japan 22(5), 582–586 (2004)CrossRefGoogle Scholar
  35. 35.
    Tadokoro, S.: Special project on development of advanced robots for disaster response (DDT Project). In: 2005 IEEE Workshop on Advanced Robotics and its Social Impacts, vol. 24, pp. 66–72 (2005)Google Scholar
  36. 36.
    Tadokoro, S.: DDT project on rescue robots and systems. In: 2006 SICE-ICASE International Joint Conference, pp. 3429–3434 (2006)Google Scholar
  37. 37.
    Takayama, T., Hirose, S.: Development of Souryu-I connected crawler vehicle for inspection of narrow and winding space. In: IECON Proceedings (Industrial Electronics Conference), vol. 1, pp. 143–148 (2000)Google Scholar
  38. 38.
    Matsuno, F, Tadokoro, S.: Rescue robots and systems in Japan. In: 2004 IEEE International Conference on Robotics and Biomimetics, pp. 12–20 (2004)Google Scholar
  39. 39.
    Martens, J.D., Newman, W.S.: Stabilization of a mobile robot climbing stairs. In: 1994 IEEE International Conference on Robotics and Automation, pp. 2501–2507 (1994)Google Scholar
  40. 40.
    Buckstone, K., Judd, L., Orlowski, N., Tayler-Grint, M., Williams, R., Zauls, E.: Warwick mobile robotics? Urban Search and Rescue Robot (2013)Google Scholar
  41. 41.
    Wells, P., Deguire, D.: TALON: A universal unmanned ground vehicle platform, enabling the mission to be the focus. In: Unmanned Ground Vehicle Technology VII, vol. 5804 (2005)Google Scholar
  42. 42.
    Human-Robot Informatics Laboratory: Disaster Response Robot Quince (2012) [Online]. Available: [Accessed: 01 Dec 2018]
  43. 43.
    Kruijff, G.J.M., Pirri, F., Gianni, M., Papadakis, P., Pizzoli, M., Sinha, A., Tretyakov, V., Linder, T., Pianese, E., Corrao, S., Priori, F., Febrini, S., Angeletti, S.: Rescue robots at earthquake-hit Mirandola, Italy: A field report. In: 2012 IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2012, pp. 1–8 (2012)Google Scholar
  44. 44.
    Larochelle, B., Kruijff, G.-J. M., Smets, N., Mioch, T., Groenewegen, P.: Establishing human situation awareness using a multi-modal operator control unit in an urban search and rescue human-robot team. In: IEEE International Workshop on Robot and Human Interactive Communication (2011), pp. 229–234 (2011)Google Scholar
  45. 45.
    Kruijff-Korbayova, I., Freda, L., Gianni, M., Ntouskos, V., Hlavac, V., Kubelka, V., Zimmermann, E., Surmann, H., Dulic, K., Rottner, W., Gissi, E.: Deployment of ground and aerial robots in earthquake-struck Amatrice in Italy (brief report). In: 2016 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 278–279 (2016)Google Scholar
  46. 46.
    De Cubber, G.: Project Public Report-ICARUS (2012)Google Scholar
  47. 47.
    De Cubber, G., Doroftei, D., Serrano, D., Chintamani, K., Sabino, R., Ourevitch, S.: The EU-ICARUS project: Developing assistive robotic tools for search and rescue operations. In: 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics SSRR 2013 (2013)Google Scholar
  48. 48.
    De Cubber, G., Doroftei, D., Rudin, K., Berns, K., Matos, A., Serrano, D., Sanchez, J.M., Govindaraj, S., Bedkowski, J., Roda, R., Silva, E., Ourevitch, S., Wagemans, R., Lobo, V., Cardoso, G., Chintamani, K., Gancet, J., Stupler, P., Nezhadfard, A., Tosa, M., Balta, H., Almeida, J., Martins, A., Ferreira, H., Ferreira, B., Alves, J., Dias, A., Fioravanti, S., Bertin, D., Moreno, G., Cordero, J., Marques, M.M., Grati, A., Chaudhary, H.M., Sheers, B., Riobo, Y., Letier, P., Jimenez, M.N., Esbri, M.A., Musialik, P., Badiola, I., Goncalves, R., Coelho, A., Pfister, T., Majek, K., Pelka, M., Maslowski, A., Baptista, R: Search and rescue robotics - from theory to practice. InTech (2017)Google Scholar
  49. 49.
    Gilbert, G.R., Beebe, M.K: United States Department of Defense Research in Robotic Unmanned Systems for Combat Casualty Care (2010)Google Scholar
  50. 50.
    Theobald, D.: Mobile extraction-assist robot. US Patent 7,719,222, B2 (2010)Google Scholar
  51. 51.
    Samuels, D.J., Bock, H., Mauli, K., Stoy, W.: Emergency medical technician-basic. National Standard Curriculum (1996)Google Scholar
  52. 52.
    Hu, J., Lim, Y.-J.: Robotic first responder system and method. US Patent 20140150806 A1 (2014)Google Scholar
  53. 53.
    Iwano, Y., Osuka, K., Amano, H.: Development of stretcher component robots for rescue activity. IEEE Conf. Robot. Autom. Mechatronics 2, 1–3 (2004)Google Scholar
  54. 54.
    Fisher, N., Gilbert, G.R.: Unmanned systems in support of future medical operations in dense urban environments. Small Wars J. (2016)Google Scholar
  55. 55.
    Johnson, K., Pearce, F., Westenskow, D., Ogden, L.L., Farnsworth, S., Peterson, S., White, J., Slade, T.: Clinical evaluation of the life support for trauma and transport (LSTATTM) platform. Crit. Care 6(5), 439–446 (2002)CrossRefGoogle Scholar
  56. 56.
    Velmahos, G.C., Demetriades, D., Ghilardi, M., Rhee, P., Petrone, P., Chan, L.S.: Life support for trauma and transport: A mobile ICU for safe in-hospital transport of critically injured patients. J. Am. Coll. Surg. 199(1), 62–68 (2004)CrossRefGoogle Scholar
  57. 57.
    Hanson, M.E.: Life support for trauma and transport (LSTAT) patient care platform: Expanding global applications and impact. In: RTO HFM Symposium on “Combat Casualty Care in Ground Based Tactical Situations, Trauma Technology and Emergency Medical Providers (2004)Google Scholar
  58. 58.
    Palmer, R.W.: Integrated Diagnostic and Treatment Devices for Enroute Critical Care of Patients within Theater (2010)Google Scholar
  59. 59.
    Wolf, A., Brown, H.B., Casciola, R., Costa, A., Schwerin, M., Shamas, E., Choset, H.: A mobile hyper redundant mechanism for search and rescue tasks. In: 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), vol. 3, pp. 2889–2895 (2003)Google Scholar
  60. 60.
    Chu, J.: A Robomedic for the Battlefield. MIT Technology Review (2009)Google Scholar
  61. 61.
    Beasley, R.a.: Medical robots: Current systems and research directions. J. Robot. 2012, 1–14 (2012)CrossRefGoogle Scholar
  62. 62.
    Thompson, K.: Squad multipurpose equipment transport (SMET) [Online]. Available: [Accessed: 01 Dec 2018] (2015)
  63. 63.
    Massey, K.: Squad mission equipment transport (SMET): Lessons learned for industry. [Online]. Available: [Accessed: 01 Dec 2018] (2016)
  64. 64.
    Martin, L: SMSS: The right solution at the right time. [Online]. Available: [Accessed: 01 Dec 2018] (2013)
  65. 65.
    Qinetiq: Titan: Dismounted troop support system. [Online]. Available: [Accessed: 01 Dec 2018]
  66. 66.
    HDT Global: PHDT protector robot squad multipurpose equipment transport (SMET). [Online]. Available: [Accessed: 01 Dec 2018]
  67. 67.
    Massey, K.: One system... many missions. [Online]. Available: [Accessed: 01 Dec 2018] (2016)
  68. 68.
    Pande, R.U., Patel, Y., Powers, C.J., D’ancona, G., Karamanoukian, H.L.: The telecommunication revolution in the medical field: Present applications and future perspective. Curr. Surg. 60(6), 636–640 (2003)CrossRefGoogle Scholar
  69. 69.
    Avgousti, S., Christoforou, E.G., Panayides, A.S., Voskarides, S., Novales, C., Nouaille, L., Pattichis, C.S., Vieyres, P.: Medical telerobotic systems: Current status and future trends. BioMedical Engineering Online. BioMed Central 15(1), 96 (2016)Google Scholar
  70. 70.
    Enayati, N., De Momi, E., Ferrigno, G.: Haptics in robot-assisted surgery: Challenges and benefits. IEEE Rev. Biomed. Eng. 9, 49–65 (2016)CrossRefGoogle Scholar
  71. 71.
    Morelli, L., Guadagni, S., Lorenzoni, V., Di Franco, G., Cobuccio, L., Palmeri, M., Caprili, G., D’Isidoro, C., Moglia, A., Ferrari, V., Di Candio, G., Mosca, F., Turchetti, G.: Robot-assisted versus laparoscopic rectal resection for cancer in a single surgeon’s experience: A cost analysis covering the initial 50 robotic cases with the da Vinci Si. Int. J. Colorectal Dis. 31(9), 1639–1648 (2016)CrossRefGoogle Scholar
  72. 72.
    Rosen, J., Hannaford, B.: Doc at a distance. IEEE Spectr. 43(10), 34–39 (2006)CrossRefGoogle Scholar
  73. 73.
    Lum, M.J.H., Friedman, D.C.W., Sankaranarayanan, G., King, H., Fodero, K., Leuschke, R., Hannaford, B., Rosen, J., Sinanan, M.N.: The RAVEN: Design and validation of a telesurgery system. Int. J. Rob. Res. 28(9), 1183–1197 (2009)CrossRefGoogle Scholar
  74. 74.
    Rosen, J., Lum, M., Sinanan, M., Hannaford, B.: Raven: Developing a surgical robot from a concept to a transatlantic teleoperation experiment. In: Surgical Robotics: Systems Applications and Visions, pp 159–197. Springer, Boston (2011)Google Scholar
  75. 75.
    Li, Z., Milutinovic, D., Rosen, J.: Design of a multi-arm surgical robotic system for dexterous manipulation. J. Mech. Robot. 8(6), 061017 (2016)CrossRefGoogle Scholar
  76. 76.
    Hannaford, B., Rosen, J., Friedman, D.W., King, H., Roan, P., Cheng, L., Glozman, D., Ma, J., Kosari, S.N., White, L.: Raven-II: An open platform for surgical robotics research. IEEE Trans. Biomed. Eng. 60(4), 954–959 (2013)CrossRefGoogle Scholar
  77. 77.
    Hannaford, B., Friedman, D., King, H., Lum, M., Rosen, J., Sankaranarayanan, G.: Evaluation of RAVEN surgical telerobot during the NASA Extreme Environment Mission Operations (NEEMO) 12 mission, Univ. Washingt. Electr. Eng. Dep. Tech Rep (2009)Google Scholar
  78. 78.
    Garcia, P., Low, T.: Going the distance: Surgical robotics and remote medical care in the battlefield. Medical Design Briefs (2010)Google Scholar
  79. 79.
    Doarn, C.R., Anvari, M., Low, T., Broderick, T.J.: Evaluation of teleoperated surgical robots in an enclosed undersea environment. Telemed. e-Health 15(4), 325–335 (2009)CrossRefGoogle Scholar
  80. 80.
    Haidegger, T., Benyo, Z.: Surgical robotic support for long duration space missions. Acta Astronaut. 63 (7–10), 996–1005 (2008)CrossRefGoogle Scholar
  81. 81.
    Tesar, D., Kapoor, C., Pholsiri, C., Jung, E., Giem, G., Knoll, J.: Trauma pod: Operating room of the future (2006)Google Scholar
  82. 82.
    Garcia, P., Rosen, J., Kapoor, C., Noakes, M., Elbert, G., Treat, M., Ganous, T., Hanson, M., Manak, J., Hasser, C., Rohler, D., Satava, R.: Trauma pod: A semi-automated telerobotic surgical system. Int. J. Med. Robot. Comput. Assist. Surg. 5(2), 136–146 (2009)CrossRefGoogle Scholar
  83. 83.
    Anderson, J., Baltes, J., Tu, K.-Y.: Improving robotics competitions for real-world evaluation of AI. In: 2009 AAAI Spring Symposium on Experimental Design for Real-World Systems (2009)Google Scholar
  84. 84.
    Behnke, S.: Robot competitions-ideal benchmarks for robotics research. In: IROS-2006 Workshop on Benchmarks in Robotics ResearchGoogle Scholar
  85. 85.
    del Pobil, A.: Benchmarks in robotics research. IROS 2006 workshop (2006)Google Scholar
  86. 86.
    Schneider, F.E., Wildermuth, D., Brüggemann, B., Röhling, T: European land robot trial (elrob) towards a realistic benchmark for outdoor robotics. In: 1st international Conference on Robotics in Education (RiE2010), pp. 65–70 (2010)Google Scholar
  87. 87.
    Wettergreen, D.S., Barfoot, T.D.: Field and service robotics: Results of the 10th international conference. In: Springer Tracts in Advanced Robotics, vol. 113, pp. 533–546 (2016)Google Scholar
  88. 88.
    The European Land Robot Trial (ELROB); Official Webpage (2017) [Online]. Available: [Accessed: 02 Dec 2018]
  89. 89.
    Robotic Competition - European Land-Robot Trial 2018 [Online]. Available: [Accessed: 02 Dec 2018]
  90. 90.
    Sheh, R., Schwertfeger, S., Visser, A: 16 Years of RoboCup rescue. KI - Künstliche Intelligenz 30 (3–4), 267–277 (2016)CrossRefGoogle Scholar
  91. 91.
    Kitano, H.: RoboCup rescue: A grand challenge for multi-agent systems. In: 4th International Conference on MultiAgent Systems, ICMAS 2000, vol. 22, no. 1, pp. 5–12 (2000)Google Scholar
  92. 92.
    Tadokoro, S., Kitano, H., Takahashi, T., Noda, I., Matsubara, H., Shinjoh, A., Koto, T., Takeuchi, I., Takahashi, H., Matsuno, F., Hatayama, M., Nobe, J., Shimada, S.: The RoboCup-Rescue project: A robotic approach to the disaster mitigation problem. In: IEEE International Conference on Robotics and Automation (2000 ICRA Millennium Conference), vol. 4, pp. 4089–4094 (2000)Google Scholar
  93. 93.
    Jacoff, A., Messina, E., Evans, J.: A standard test course for urban search and rescue robots. In: Performance metrics for intelligent systems Workshop (NIST SP 970), pp. 253–259 (2000)Google Scholar
  94. 94.
    RoboCup 2016 - Leipzig, Germany; Official Website (2016) [Online]. Available: [Accessed: 02 Dec 2018]
  95. 95.
    DARPA Grand Challenge, Official Website. [Online]. Available: [Accessed: 02 Dec 2018]
  96. 96.
    Haynes, G.C., Stager, D., Stentz, A., Vande Weghe, J.M., Zajac, B., Herman, H., Kelly, A., Meyhofer, E., Anderson, D., Bennington, D., Brindza, J., Butterworth, D., Dellin, C., George, M., Gonzalez-Mora, J., Jones, M., Kini, P., Laverne, M., Letwin, N., Perko, E., Pinkston, C., Rice, D., Scheifflee, J., Strabala, K., Waldbaum, M., Warner, R.: Developing a robust disaster response robot: CHIMP and the robotics challenge. J. F. Robot. 34(2), 281–304 (2017)CrossRefGoogle Scholar
  97. 97.
    Kim, S., Kim, M.M., Lee, J., Hwang, S., Chae, J., Park, B., Cho, H., Sim, J., Jung, J., Lee, H., Shin, S., Kim, M.M., Kwak, N., Lee, Y., Lee, S., Lee, M., Yi, S., Chang, K.S.K.C., Park, J.: Approach of team SNU to the DARPA robotics challenge finals. IEEE-RAS Int. Conf. Humanoid Robot. 2015–Decem, 777–784 (2015)Google Scholar
  98. 98.
    Kohlbrecher, S., Romay, A., Stumpf, A., Gupta, A., von Stryk, O., Bacim, F., Bowman, D.A., Goins, A., Balasubramanian, R., Conner, D.C.: Human-robot teaming for rescue missions: team ViGIR’s approach to the 2013 DARPA robotics challenge trials. J. F. Robot. 32(3), 352–377 (2015)CrossRefGoogle Scholar
  99. 99.
    Yi, S.-J., McGill, S.G., Vadakedathu, L., He, Q., Ha, I., Han, J., Song, H., Rouleau, M., Zhang, B.-T., Hong, D., Yim, M., Lee, D.D.: Team THOR’s entry in the DARPA robotics challenge trials 2013. J. F. Robot. 32(3), 315–335 (2015)CrossRefGoogle Scholar
  100. 100.
    Matos, A., Martins, A., Dias, A., Ferreira, B., Almeida, J.M., Ferreira, H., Amaral, G., Figueiredo, A., Almeida, R., Silva, F: Multiple robot operations for maritime search and rescue in euRathlon 2015 competition. In: OCEANS 2016 - Shanghai, pp. 1–7 (2016)Google Scholar
  101. 101.
    Winfield, A.F.T., Franco, M.P., Brueggemann, B., Castro, A., Limon, M.C., Ferri, G., Ferreira, F., Liu, X., Petillot, Y., Roning, J., Schneider, F., Stengler, E., Sosa, D., Viguria, A.: euRathlon 2015: A multi-domain multi-robot grand challenge for search and rescue robots. In: Towards Autonomous Robotic Systems, pp. 351–363 (2016)Google Scholar
  102. 102.
    eu ROBOTICS: ERL emergency 2018-2019. [Online]. Available:[Accessed: 13 Aug 2018]
  103. 103.
    Ferreira, F., Ferri, G., Petillot, Y., Liu, X., Franco, M.P., Matteucci, M., Grau, F.J.P., Winfield, A.F.: Scoring robotic competitions: Balancing judging promptness and meaningful performance evaluation. In: 18th IEEE International Conference on Autonomous Robot Systems and Competitions ICARSC 2018, pp. 179–185 (2018)Google Scholar
  104. 104.
    Amigoni, F., Bastianelli, E., Berghofer, J., Bonarini, A., Fontana, G., Hochgeschwender, N., Iocchi, L., Kraetzschmar, G., Lima, P., Matteucci, M., Miraldo, P., Nardi, D., Schiaffonati, V.: Competitions for benchmarking: Task and functionality scoring complete performance assessment. IEEE Robot. Autom. Mag. 22(3), 53–61 (2015)CrossRefGoogle Scholar
  105. 105.
    Ben-Tzvi, P., Williams, A., Sebastian, B., Kumar, A., Saab, W.: Semi-autonomous victim extraction robot (SAVER), U.S. Provisional Patent Application No. 62/660,869 (2018)Google Scholar
  106. 106.
    Sebastian, B., Ben-Tzvi, P.: Physics based path planning for autonomous tracked vehicle in challenging terrain. J. Intell. Robot. Syst., pp. 1–16 (2018)Google Scholar
  107. 107.
    Sebastian, B., Williams, A., Ben-Tzvi, P.: Control of a head stabilization system for use in robotic disaster response. In: ASME 2017 International Mechanical Engineering Congress and Exposition Volume 4A: Dynamics, Vibration, and Control (2017)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Robotics and Mechatronics Lab, Mechanical Engineering DepartmentVirginia TechBlacksburgUSA

Personalised recommendations